En Afrique, la phénologie reproductive des arbres tropicaux, majoritairement annuelle, semble présenter une certaine régularité. Cette étude documente les variations intra- et interannuelles de la phénologie reproductive des arbres de la forêt du Mayombe à partir des données historiques de la Réserve de Luki (République démocratique du Congo). Le diamètre de reproduction des espèces exploitées pour le bois, encore largement méconnu, a été également examiné pour les espèces suffisamment représentées dans les données. Le suivi phénologique de 3 642 arbres appartenant à 158 espèces et 39 familles a été réalisé tous les 10 jours de 1948 à 1957. Les statistiques circulaires ont été utilisées pour tester le synchronisme de la phénologie entre arbres, à l'échelle de la communauté, pour la forêt dans son ensemble, et individuellement pour 87 espèces, dont 35 espèces bien représentées (n ≥ 20 arbres), 16 espèces commerciales et 36 autres espèces. Des régressions logistiques ont permis de déterminer le diamètre de fructification (minimum et régulier) de ces espèces. Pour la majorité des espèces, la floraison était régulière, annuelle et largement saisonnière (81,6 %, 71 espèces). Les pics étaient plus marqués pour la floraison que pour la fructification, plus étalée dans le temps, bien que significativement agrégée temporellement. La majorité des arbres et des espèces fleurissaient entre décembre et février, pendant la petite saison sèche, bien que des fleurs et des fruits étaient observables toute l'année à l'échelle de la communauté. Seules 13 espèces ont montré une relation significative entre le diamètre et la reproduction, parmi lesquelles sept espèces de canopée, cinq de sous-bois et une héliophile. Pour ces espèces, la moyenne du diamètre minimum de reproduction était de 17,3 cm. ; Peer reviewed
A diversity of phenological strategies has been reported for tropical tree species. Defoliation and seasonal dormancy of cambial activity inform us on how trees cope with water stress during the dry season, or maximize the use of resources during the rainy season. Here, we study the matching between leaf phenology (unfolding and shedding) and cambial activity for Prioria balsamifera, a key timber species in the Democratic Republic of Congo. In particular, we (i) evaluated the seasonality of cambial activity and synchrony of phenology among trees in response to climate and (ii) identified the seasonality of leaf phenology and its relation with cambial phenology. The study was conducted in the Luki Man and Biosphere Reserve, located in the Mayombe forest at the southern margin of the Congo Basin. Historic defoliation data were collected every ten days using weekly crown observations whereas recent observations involved time-lapse cameras. Cambial pinning was performed on ten trees during 20 months and radius dendrometers were installed on three trees during 13 months. Tree rings were measured on cores from 13 trees and growth synchrony was evaluated. We found that P. balsamifera defoliates annually with a peak observed at the end of the dry season and the beginning of the rainy season. The new leaves unfolded shortly after shedding of the old leaves. The peak defoliation dates varied across years from September 12 to November 14 and the fraction of number of trees that defoliated at a given time was found to be negatively correlated with annual rainfall and temperature; during the dry season, when precipitation and temperatures are the lowest. Wood formation (radial growth), was found to be highly seasonal, with cambial dormancy occurring during the dry season and growth starting at the beginning of the rainy season. Individual ring-width series did not cross date well. The within species variability of leaf phenology and cambial rhythms provides indication about resistance of the population against climatic changes.
This is the final version of the article. Available from Wiley via the DOI in this record. ; Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height-diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height. Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally derived height-diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement. Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height-diameter models with low height prediction error) entirely random or diameter size-class stratified approaches. Our results indicate that even limited sampling of heights can be used to refine height-diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample. ; This paper is a product of the RAINFOR, AfriTRON and T-FORCES networks, for which we are indebted to the hundreds of institutions, field assistants and local communities across many countries that have supported and hosted fieldwork. The three networks have been supported by the Natural Environment Research Council (NERC) Urgency Grants and NERC Consortium Grants "AMAZONICA" (NE/F005806/1), "TROBIT" (NE/D005590/1) and "BIO-RED" (NE/N012542/1), a NERC New Investigators Grant, a European Research Council grant ("Tropical Forests in the Changing Earth System"), the Gordon and Betty Moore Foundation, the David and Lucile Packard Foundation, the European Union's Seventh Framework Programme (283080, "GEOCARBON"; 282664, "AMAZALERT"), the Royal Society and Gabon's National Parks Agency (ANPN). R.J.W.B. is funded by a NERC research fellowship (grant ref: NE/I021160/1). S.L.L. was supported by a Royal Society University Research Fellowship, ERC Advanced Grant and a Phillip Leverhulme Prize. O.L.P. is supported by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. L.F.B. was supported by a NERC studentship, RGS-IBG Henrietta Hutton Grant and Royal Society Dudley Stamp Award. R.H. and M.C. were supported through the long-term research development project no. RVO 67985939 and a KBFSC research fellowship (2011, to R.H.). M. Svátek was funded by the Ministry of Education, Youth and Sports of the Czech Republic (grant number INGO II LG15051). We thank Georgia Pickavance for assistance with database curation, and Natacha Nssi Bengone, Sylvester Chenikan, Eric Chezeaux, Armandu Daniels, Jean-Louis Doucet, Kath Jeffery, Edi Mirmanto, Abel Monteagudo-Mendoza, Faustin Mpanya Lukasu, Reuben Nilus, Guido Pardo, Lourens Poorter, Sylvester Tan, Marisol Toledo, Armando Torres-Lezama, John Tshibamba Mukendi, Richard Tshombe, Geertje van der Heijden, Lee White, Hannsjoerg Woell and John Woods, Gabon's National Parks Agency (ANPN), the Forest Development Authority of Liberia and Wildlife Conservation Society-Democratic Republic of Congo for assistance with access to datasets. We thank an anonymous reviewer for constructive comments on this manuscript.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714977115/-/DCSupplemental. ; Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. ; European Union's Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Grant Agreement 660020, Instituto Bem Ambiental (IBAM), Myr Projetos Sustentáveis, IEF, and CNPq, CAPES FAPEMIG, German Research Foundation (DFG; Grants CRC 552, CU127/3-1, HO 3296/2-2, HO3296/4-1, and RU 816), UNAM-PAPIIT IN218416 and Semarnat-CONACYT 128136, Conselho Nacional de Desenvolvimento Científico e Tecnoloógico (CNPq, Brazil), Fundação Grupo Boticário de Proteção à Natureza/Brazil, PAPIIT-DGAPA-UNAM (Project IN-204215), National Geographic Society, National Foundation for Scientific and Technology Development Vietnam (Grant 106.11-2010.68), Operation Wallacea, and core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment's Science and Innovation Group. ; Peer-reviewed ; Publisher Version