Narvaer Bürger- und Einwohnerbuch 1581 - 1704
In: Veröffentlichungen der Forschungsstelle Ostmitteleuropa an der Universität Dortmund
In: Reihe B 64
7 Ergebnisse
Sortierung:
In: Veröffentlichungen der Forschungsstelle Ostmitteleuropa an der Universität Dortmund
In: Reihe B 64
In: Studien zur Militärgeschichte, Militärwissenschaft und Konfliktforschung 10
In: Quellen und Darstellungen zur Personengeschichte des östlichen Europa Bd. 3
ABSTRACT Background: Among all present demosponges, lithistids represent a polyphyletic group with exceptionally well preserved fossils dating back to the Cambrian. Knowledge of their recent diversity, particularly in the Tropical Western Atlantic Ocean (TWA) where they are common in deep waters, is scarce making any comparison between present and past major 'lithistid' faunas difficult. In addition, the lack of sufficient molecular and morphological data hamper any predictions on phylogenetic relationships or phylodiversity from this region. The Harbor Branch Oceanographic Institute (HBOI, Fort Pierce, Florida) holds the largest collection of TWA lithistid sponges worldwide, however, the majority remain to be taxonomically identified and revised. Methods/Principal Findings: In this study we provide sequences of 249 lithistid demosponges using two independent molecular markers (28S rDNA (C1-D2) and cox1 mtDNA). In addition, a morphological documentation of 70 lithistid specimens is provided in the database of the Sponge Barcoding Project (SBP). This integrated dataset represents the largest and most comprehensive of the TWA lithistids to date. The phylogenetic diversity of 'lithistid' demosponges in the Bahamas and Jamaica are high in comparison to other TWA regions; Theonellidae and Corallistidae dominate the fauna, while Neopeltidae and Macandrewiidae are rare. A new tetractinellid suborder, one new genus and several new species are recognized and the Pacific 'lithistid' genera, Herengeria and Awhiowhio, are reported from the TWA for the first time. The higher-taxa relationships of desma-bearing tetractinellids are discussed and topics for revision suggested. Conclusion: This first integrative approach of TWA 'lithistid' demosponges contributes to a better understanding of their phylogenetic affinities, diversity and bathymetric distribution patterns within the TWA. As in the Pacific, the TWA 'lithistid' demosponges dominate deep-water habitats. Deeper taxonomic investigations will undoubtedly contribute to a ...
BASE
The Galápagos Islands, positioned in the confluence of warm and coldwater currents in the Eastern Pacific, is well known for the high degree of endemism of its marine invertebrate fauna. This fauna has been studied extensively in recent years: the echinoderms, corals and other benthic cnidarians, but little is known about the deep- and shallow-water sponge faunas. To date, only 70 sponge species have been described from the Galápagos Islands, 37 of which are endemic. Of these 70 species, only one shallow-water species of desma-bearing Tetractinellida (Demospongiae), Corallistes isabela, has been reported. In 1995, Harbor Branch Oceanographic Institution, Florida, led an expedition around the Galápagos archipelago, focussed on the collection of deep-water Porifera. Here, we describe seven new species and provide DNA barcodes for the tetractinellids from these collections. Phylogenetic relationships of these new species are discussed and compared with other material from the Caribbean, the Central and West Pacific Oceans. The new species represent five genera (Craniella, and desma-bearing Tetractinellida Neophrissospongia, Corallistes, Racodiscula and Scleritoderma). Phylogenetic reconstructions combining independent markers (mtDNA and rDNA) support the generic affiliation of these new species and confirm the separation of Eastern Pacific species from Caribbean and Central to West Pacific species. ; ACKNOWLEDGEMENTS: Financial support for this study was provided by the German Science Foundation (DFG ER 611/3-1, DFG Wo869/15-1). The LMUMentoring and the HELGE AX:Son JOHNSON STIFTELSE provided funding for AS to visit HBOI (Florida, USA) and NIWA (National Institute of Water and Atmospheric Research, Auckland and Wellington in New Zealand). We greatly thank the colleagues Amy Wright, John Reed and Megan Conkling from HBOI for sharing material, help in the collection, shipping from Florida and providing underwater and deck pictures for the new described species as well as the crew of the RV 'Johnson Sea Link I' ...
BASE
ABSTRACT Marine sponges (Phylum Porifera) are globally distributed within marine and freshwater ecosystems. In addition, sponges host dense and diverse prokaryotic communities, which are potential sources of novel bioactive metabolites and other complex compounds. Those sponge-derived natural products can span a broad spectrum of bioactivities, from antibacterial and antifungal to antitumor and antiviral compounds. However, most analyses concerning sponge-associated prokaryotes have mainly focused on conveniently accessible relatively shallow sampling locations for sponges. Hence, knowledge of community composition, host-relatedness and biotechnological potential of prokaryotic associations in temperate and cold-water sponges from greater depths (mesophotic to mesopelagic zones) is still scarce. Therefore, we analyzed the prokaryotic community diversity of four phylogenetically divergent sponge taxa from mesophotic to mesopelagic depths of Antarctic shelf at different depths and locations in the region of the South Shetland Islands using 16S rRNA gene amplicon-based sequencing. In addition, we predicted functional profiles applying Tax4Fun from metagenomic 16S rRNA gene data to estimate their biotechnological capability and possible roles as sources of novel bioactive compounds. We found indications that cold and deep-water sponges exhibit host-specific prokaryotic communities, despite different sampling sites and depths. Functional prediction analysis suggests that the associated prokaryotes may enhance the roles of sponges in biodegradation processes of xenobiotics and their involvement in the biosynthesis of secondary metabolites. ; ACKNOWLEDGEMENTS We are grateful for the excellent support of captain Thomas Wunderlich and his crew on board RV Polarstern. CONFLICT OF INTEREST STATEMENT The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. SUPPLEMENTARY METERIAL The Supplementary Material for ...
BASE
ABSTRACT In the present study, we profiled bacterial and archaeal communities from 13 phylogenetically diverse deep-sea sponge species (Demospongiae and Hexactinellida) from the South Pacific by 16S rRNA-gene amplicon sequencing. Additionally, the associated bacteria and archaea were quantified by real-time qPCR. Our results show that bacterial communities from the deep-sea sponges are mostly host-species specific similar to what has been observed for shallow-water demosponges. The archaeal deep-sea sponge community structures are different from the bacterial community structures in that they are almost completely dominated by a single family, which are the ammonia-oxidizing genera within the Nitrosopumilaceae. Remarkably, the archaeal communities are mostly specific to individual sponges (rather than sponge-species), and this observation applies to both hexactinellids and demosponges. Finally, archaeal 16s gene numbers, as detected by quantitative real-time PCR, were up to three orders of magnitude higher than in shallow-water sponges, highlighting the importance of the archaea for deep-sea sponges in general. ; ACKNOWLEDGMENTS This work is dedicated to Hans Tore Rapp, coordinator of the H2020-SponGES project, mentor and friend. We thank Andrea Hethke, Ina Clefsen, and the CRC1182 Z3 team (Katja Cloppenborg-Schmidt, Malte Rühlemann, John Baines) for assistance with the amplicon pipeline. We greatly acknowledge the crew and scientific party of RV Sonne cruise SO254, as well as the ROV Kiel 6000 team for their valuable support at sea. We also thank Sven Rohde, Tessa Clemens and the entire benthic invertebrate team of the RV Sonne Cruise SO254 for their assistance in sample collection, processing and cataloging. We thank Henry Reiswig for advice on identification of hexactinellid samples. Sample collection was carried out under the "Application for consent to conduct marine scientific research in areas under national jurisdiction of New Zealand (dated 7.6.2016)." This is publication 68 of Senckenberg am Meer ...
BASE