The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
In: Murphy , C , Wilson , C E , Robertson , D M , Ecker , C , Daly , E M , Hammond , N , Galanopoulos , A , Dud , I , Murphy , D & Mcalonan , G M 2016 , ' Autism spectrum disorder in adults : diagnosis, management, and health services development ' , Neuropsychiatric Disease and Treatment , vol. Volume 12 , pp. 1669-1686 . https://doi.org/10.2147/NDT.S65455
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by pervasive difficulties since early childhood across reciprocal social communication and restricted, repetitive interests and behaviors. Although early ASD research focused primarily on children, there is increasing recognition that ASD is a lifelong neurodevelopmental disorder. However, although health and education services for children with ASD are relatively well established, service provision for adults with ASD is in its infancy. There is a lack of health services research for adults with ASD, including identification of comorbid health difficulties, rigorous treatment trials (pharmacological and psychological), development of new pharmacotherapies, investigation of transition and aging across the lifespan, and consideration of sex differences and the views of people with ASD. This article reviews available evidence regarding the etiology, legislation, diagnosis, management, and service provision for adults with ASD and considers what is needed to support adults with ASD as they age. We conclude that health services research for adults with ASD is urgently warranted. In particular, research is required to better understand the needs of adults with ASD, including health, aging, service development, transition, treatment options across the lifespan, sex, and the views of people with ASD. Additionally, the outcomes of recent international legislative efforts to raise awareness of ASD and service provision for adults with ASD are to be determined. Future research is required to identify high-quality, evidence-based, and cost-effective models of care. Furthermore, future health services research is also required at the beginning and end of adulthood, including improved transition from youth to adult health care and increased understanding of aging and health in older adults with ASD.
Clodagh M Murphy,1,2 C Ellie Wilson,1–3 Dene M Robertson,1,2 Christine Ecker,1,4 Eileen M Daly,1,2 Neil Hammond,1,2 Anastasios Galanopoulos,1,2 Iulia Dud,1,2 Declan G Murphy,1,2 Grainne M McAlonan1,2 1Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology & Neuroscience, 2Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK; 3Individual Differences, Language and Cognition Lab, Department of Developmental and Educational Psychology, University of Seville, Spain; 4Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe-University, Frankfurt am Main, Germany Abstract: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by pervasive difficulties since early childhood across reciprocal social communication and restricted, repetitive interests and behaviors. Although early ASD research focused primarily on children, there is increasing recognition that ASD is a lifelong neurodevelopmental disorder. However, although health and education services for children with ASD are relatively well established, service provision for adults with ASD is in its infancy. There is a lack of health services research for adults with ASD, including identification of comorbid health difficulties, rigorous treatment trials (pharmacological and psychological), development of new pharmacotherapies, investigation of transition and aging across the lifespan, and consideration of sex differences and the views of people with ASD. This article reviews available evidence regarding the etiology, legislation, diagnosis, management, and service provision for adults with ASD and considers what is needed to support adults with ASD as they age. We conclude that health services research for adults with ASD is urgently warranted. In particular, research is required to better understand the needs of adults with ASD, including health, aging, service development, transition, treatment options across the lifespan, sex, and the views of people with ASD. Additionally, the outcomes of recent international legislative efforts to raise awareness of ASD and service provision for adults with ASD are to be determined. Future research is required to identify high-quality, evidence-based, and cost-effective models of care. Furthermore, future health services research is also required at the beginning and end of adulthood, including improved transition from youth to adult health care and increased understanding of aging and health in older adults with ASD. Keywords: autism, adults, diagnosis, management, service development
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language-neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity. ; This work was supported by the Waterloo Foundation [grant number 921/1247 to S.B-C. and M-C.L.], the UK Medical Research Council [grant number GO 400061 to D.G.M.M., S.B-C. and E.T.B.], and the European Autism Interventions - A Multicentre Study for Developing New Medications (EU-AIMS); EU-AIMS receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115300, resources of which are composed of financial contribution from the European Union's Seventh ...
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by pervasive difficulties since early childhood across reciprocal social communication and restricted, repetitive interests and behaviors. Although early ASD research focused primarily on children, there is increasing recognition that ASD is a lifelong neurodevelopmental disorder. However, although health and education services for children with ASD are relatively well established, service provision for adults with ASD is in its infancy. There is a lack of health services research for adults with ASD, including identification of comorbid health difficulties, rigorous treatment trials (pharmacological and psychological), development of new pharmacotherapies, investigation of transition and aging across the lifespan, and consideration of sex differences and the views of people with ASD. This article reviews available evidence regarding the etiology, legislation, diagnosis, management, and service provision for adults with ASD and considers what is needed to support adults with ASD as they age. We conclude that health services research for adults with ASD is urgently warranted. In particular, research is required to better understand the needs of adults with ASD, including health, aging, service development, transition, treatment options across the lifespan, sex, and the views of people with ASD. Additionally, the outcomes of recent international legislative efforts to raise awareness of ASD and service provision for adults with ASD are to be determined. Future research is required to identify high-quality, evidence-based, and cost-effective models of care. Furthermore, future health services research is also required at the beginning and end of adulthood, including improved transition from youth to adult health care and increased understanding of aging and health in older adults with ASD.
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
In humans, both language and fine motor skills are associated with left-hemisphere specialization, whereas visuospatial skills are associated with right-hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right-handed adults with ASC and 69 age- and IQ-matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel-based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC. ; Funding: - UK Medical Research Council. Grant Number: GO 400061 - EU‐AIMS (Innovative Medicines Initiative Joint). Grant Number: 115300 - European Union's Seventh Framework Programme. Grant Number: FP7/2007‐2013 - Sidney Sussex College, Cambridge - William Binks Autism Neuroscience Fellowship - EU‐AIMS - Wolfson College, Cambridge - Shirley Foundation - Wellcome Trust - British Academy - Jesus College, Cambridge - NIHR Cambridge Biomedical Research Centre - Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45–62% of ASC adults show evidence for large impairments (Cohen's d = −1.03 to −11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals. ; This study was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) East of England at Cambridgeshire and Peterborough NHS Foundation Trust. This study was also conducted in association with the European Autism Interventions—A Multicentre Study for Developing New Medications (EU-AIMS) consortium; EU-AIMS receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement number 115300, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013), EFPIA companies, and Autism Speaks. This study was also supported by grants from the UK Medical Research Council (MRC) (G0600977), the Wellcome Trust (091774/Z/10/Z), and the Autism Research Trust (ART). M-CL and AR received support from the William Binks Autism Neuroscience Fellowship at the University of Cambridge. M-CL received support from the O'Brien Scholars Program within the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto. ; This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/srep35333
Individuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45-62% of ASC adults show evidence for large impairments (Cohen's d = -1.03 to -11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals. ; This study was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) East of England at Cambridgeshire and Peterborough NHS Foundation Trust. This study was also conducted in association with the European Autism Interventions—A Multicentre Study for Developing New Medications (EU-AIMS) consortium; EU-AIMS receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement number 115300, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013), EFPIA companies, and Autism Speaks. This study was also supported by grants from the UK Medical Research Council (MRC) (G0600977), the Wellcome Trust (091774/Z/10/Z), and the Autism Research Trust (ART). M-CL and AR received support from the William Binks Autism Neuroscience Fellowship at the University of Cambridge. M-CL received support from the O'Brien Scholars Program within the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health and The Hospital for Sick Children, Toronto. ; This is the final version of the article. It first appeared from Nature Publishing Group via https://doi.org/10.1038/srep35333
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.
The results leading to this publication have received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the funders.