Rezidivierende Subarachnoidalblutung über 10 Jahre infolge eines Spongioblastoms
In: Minimally invasive neurosurgery, Band 13, Heft 5, S. 139-145
ISSN: 1439-2291
24 Ergebnisse
Sortierung:
In: Minimally invasive neurosurgery, Band 13, Heft 5, S. 139-145
ISSN: 1439-2291
In: Colección Agra aberta ; 7
Government of Andalusia, Spain ; European Regional Development Fund (FEDER) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; University of Cadiz ; Government of Andalusia, Spain: P09-RNM-5136 ; CAPES: 0362-10/7 ; The present study investigated possible adverse outcomes in the marine clams Ruditapes philippinarum exposed to sediment affected by wastewater discharges at the Bay of Cadiz (SW, Spain). Six locations representing five cities were chosen for the sediment sampling during winter and summer seasons: P1 - Chiclana de la Frontera, P2 - Puerto Real, P3 - Cadiz, P4 and P5 - El Puerto de Santa Maria, P6 - Rota (reference site). Biochemical biomarkers were explored in clams after 14-days of exposure under controlled conditions, that included changes in cellular energy status (total lipids content TLP and mitochondrial electron transport activity MET), gametogenic activity (dopamine and ALP levels), metabolism of monoamines (monoamine oxidase activity - MAO), inflammation and spawning properties (cyclooxygenase activity - COX). Wastewater discharges induced energy budget alterations, as suggested by MET decrease (P4 and P5) and accumulation of To (P1, P2 and P3) in gonads. ALP levels (P1, P2 and P3), dopamine (P2) and COX activity (P1, P2, P3, P4 and P5) decreased in clams after the exposure to summer sediments. MAO increased in clams exposed to winter (P1 and P2) and summer (P3 and P4) sediments. Wastewater discharges composition changed between different seasons, mainly leading to oxidative stress, inflammation (COX activity and ALP levels) and spawning delay in summer. This study highlights the importance of considering reproduction of marine biota when assessing adverse effects of wastewater discharges. Continuous release of wastewater adequately threated or not, in aquatic ecosystems may culminate in adverse effects to the local benthic biota. (C) 2015 Elsevier Ltd. All rights reserved.
BASE
In: Materials and design, Band 132, S. 302-313
ISSN: 1873-4197
In: Asian journal of women's studies: AJWS, Band 6, Heft 3, S. 115-137
ISSN: 2377-004X
Agroforestry is one of the most prominent tools to make easy the transition of European agricultural and forestry farms to more sustainable land use systems such as agroforestry. The extent of agroforestry in Europe is 19.5 million of hectares, of which 85% is allocated to silvopastoralism mainly associated to European Southern countries but also present in some Eastern countries. Silvopasture is associated to the improvement of livestock farming systems providing feed in a more sustainable way while increasing the multiple ouputs production from the same unit of land, therefore improving rural development. The current share of silvopastoralism in the EU is the 10% of the permanent grasslands which shows the huge potential that this land use has. The second most important agroforestry systems are the homegardens which represents the 8.3% of agroforestry lands and occupy around 8.65% of the land allocated to homegardens. Forest farming is not inventoried at all, while silvoarable only occupies almost half a million hectares and less than 1% of the arable land. Europe fosters agroforestry mostly through the Rural Development programs with more than 383 and 467 measures fostering agroforestry in one way or another in the previous CAP (2007-2013) and current CAP (2014-2020). Future measures should be fostered through the CAP Strategic plans developed at country level
BASE
In: Revista española de documentación científica, Band 24, Heft 3, S. 306-314
ISSN: 0210-0614
In: Studies in family planning: a publication of the Population Council, Band 15, Heft 3, S. 143
ISSN: 1728-4465
In: Journal of the International AIDS Society, Band 11, Heft Suppl 1, S. P40
ISSN: 1758-2652
In: Studies in family planning: a publication of the Population Council, Band 16, Heft 4, S. 238
ISSN: 1728-4465
Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars. ; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
BASE
The search for Earth-like planets around late-type stars using ultrastable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals that can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnard's Star (Gl 699) to carry out a characterization of these phenomena using a set of spectroscopic data that covers about 14.5yr and comes from seven different spectrographs: HARPS, HARPS-N, CARMENES, HIRES, UVES, APF, and PFS; and a set of photometric data that covers about 15.1yr and comes from four different photometric sources: ASAS, FCAPT-RCT, AAVSO, and SNO. We have measured different chromospheric activity indicators (H alpha, CaiiHK, and Nai D), as well as the full width at half-maximum (FWHM), of the cross-correlation function computed for a sub-set of the spectroscopic data. The analysis of generalized Lomb-Scargle periodograms of the time series of different activity indicators reveals that the rotation period of the star is 145 +/- 15d, consistent with the expected rotation period according to the low activity level of the star and previous claims. The upper limit of the predicted activity-induced RV signal corresponding to this rotation period is about 1ms(-1). We also find evidence of a long-term cycle of 10 +/- 2yr that is consistent with previous estimates of magnetic cycles from photometric time series in other M stars of similar activity levels. The available photometric data of the star also support the detection of both the long-term and the rotation signals.© 2019 The Author(s).Published by Oxford University Press on behalf of the Royal Astronomical Society ; This work has been financed by the Spanish Ministry of Science, Innovation and Universities (MICIU) through the grant AYA2017-86389-P. BTP acknowledges Fundacion La Caixa for the financial support received in the form of a Ph.D. contract. JIGH acknowledges financial support from the Spanish MICIU under the 2013 Ramon y Cajal program MICIU RYC-2013-14875. ASM acknowledges financial support from the Swiss National Science Foundation (SNSF). The IAA-CSIC and UCM teams acknowledge support by the Spanish Ministry of Economy and Competitiveness (MINECO) through grants AYA2016-79425-C3-1-P, AYA2016-79425-C3-2-P, AYA2016-79425-C3-3-P, ESP2014-54362P, and ESP2017-87143R. IR, JCM, MP, and EHacknowledge support from the Spanish MINECO and the Fondo Europeo de Desarrollo Regional (FEDER) through grant ESP2016-80435-C2-1-R, as well as the support of the Generalitat de Catalunya/CERCA program. GAE research is funded via the STFC Consolidated Grants ST/P000592/1, and a Perren foundation grant. The results of this paper were based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF-Fundacion Galileo Galilei at the Roque de Los Muchachos Observatory of the Instituto de Astrofisica de Canarias (IAC); observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile); observations made with the CARMENES instrument at the 3.5 m telescope of the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain), funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union, and the CARMENES Consortium members. This paper made use of the IAC Supercomputing facility HTCondor (http://research.cs.wisc.edu/htcondor/), partly financed by the Ministry of Economy and Competitiveness with FEDER funds, code IACA13-3E-2493. We are grateful to all the observers of the projects whose data we are using for the following spectrographs: HARPS (072.C-0488, 183.C-0437, 191.C-0505, 099.C-0880), HARPS-N (CAT14A_43, A27CAT_83, CAT13B_136, CAT16A_109, CAT17A_38, CAT17A_58), CARMENES (CARMENES GTO survey), HIRES (U11H, U11H, N12H, N10H, A264Hr, A288Hr, C168Hr, C199Hr, C205Hr, C202Hr, C232Hr, C240Hr, C275Hr, C332Hr, H174Hr, H218Hr, H238Hr, H224Hr, H244Hr, H257Hr, K01H, N007Hr, N014Hr, N024, N054Hr, N05H, N06H, N085Hr, N086Hr, N095Hr, N108Hr, N10H, N112Hr, N118Hr, N125Hr, N129HR, N12H, N12H, N131Hr, N131Hr, N136Hr, N141Hr, N145Hr, N148Hr, N14H, N157Hr, N15H, N168Hr, N19H, N20H, N22H, N28H, N32H, N50H, N59H, U014Hr, U01H, U023Hr, U027Hr, U027Hr, U030Hr, U052Hr, U058Hr, U05H, U064Hr, U077Hr, U078Hr, U07H, U082Hr, U084Hr, U08H, U10H, U115Hr, U11H, U12H, U131Hr, U142Hr, U66H, Y013Hr, Y065Hr, Y283Hr, Y292Hr), UVES (65.L-0428, 66.C-0446, 267.C-5700, 68.C0415, 69.C-0722, 70.C-0044, 71.C-0498, 072.C0495, 173.C-0606, 078.C-0829), APF (LCES/APF planet survey), and PFS (Carnegie-California survey).
BASE
This paper describes the data acquisition and high level trigger system of the ATLAS experiment at the Large Hadron Collider at CERN, as deployed during Run 1. Data flow as well as control, configuration and monitoring aspects are addressed. An overview of the functionality of the system and of its performance is presented and design choices are discussed. ; Funding: We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.
BASE
We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than similar to 2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of themeasured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 x 10(-26) for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 x 10(-8) for J2124-3358. ; Australian Research Council ; Council of Scientific and Industrial Research of India ; Istituto Nazionale di Fisica Nucleare of Italy ; Spanish Ministerio de Educacion y Ciencia ; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears ; Netherlands Organisation for Scientific Research ; Royal Society ; Scottish Funding Council ; Polish Ministry of Science and Higher Education ; Foundation for Polish Science ; Scottish Universities Physics Alliance ; National Aeronautics and Space Administration ; Carnegie Trust ; Leverhulme Trust ; David and Lucile Packard Foundation ; Research Corporation ; Alfred P. Sloan Foundation ; Natural Sciences and Engineering Research Council of Canada ; Commonwealth Government ; Astronomy
BASE