A fresh look on old analytical solutions for water waves on a constant slope
In: Proceedings of the Estonian Academy of Sciences, Band 64, Heft 3, S. 422
ISSN: 1736-7530
86 Ergebnisse
Sortierung:
In: Proceedings of the Estonian Academy of Sciences, Band 64, Heft 3, S. 422
ISSN: 1736-7530
In: Natural hazards and earth system sciences: NHESS, Band 12, Heft 6, S. 2003-2018
ISSN: 1684-9981
Abstract. Due to the catastrophic consequences of tsunamis, early warnings need to be issued quickly in order to mitigate the hazard. Additionally, there is a need to represent the uncertainty in the predictions of tsunami characteristics corresponding to the uncertain trigger features (e.g. either position, shape and speed of a landslide, or sea floor deformation associated with an earthquake). Unfortunately, computer models are expensive to run. This leads to significant delays in predictions and makes the uncertainty quantification impractical. Statistical emulators run almost instantaneously and may represent well the outputs of the computer model. In this paper, we use the outer product emulator to build a fast statistical surrogate of a landslide-generated tsunami computer model. This Bayesian framework enables us to build the emulator by combining prior knowledge of the computer model properties with a few carefully chosen model evaluations. The good performance of the emulator is validated using the leave-one-out method.
In: Natural hazards and earth system sciences: NHESS, Band 13, Heft 3, S. 625-648
ISSN: 1684-9981
Abstract. The island of Ireland is battered by waves from all sides, most ferociously on the west coast as the first port of call for waves travelling across the Atlantic Ocean. However, when discussing ocean events relevant to the nation of Ireland, one must actually consider its significantly larger designated continental shelf, which is one of the largest seabed territories in Europe. With this expanded definition, it is not surprising that Ireland has been subject to many oceanic events which could be designated as "extreme"; in this paper we present what we believe to be the first catalogue of such events, dating as far back as the turn of the last ice age.
In: Defence Technology, Band 18, Heft 9, S. 1513-1522
ISSN: 2214-9147
In: Materials & Design, Band 47, S. 698-705
In: Defence Technology, Band 17, Heft 5, S. 1699-1711
ISSN: 2214-9147
In: Materials & Design, Band 43, S. 384-392
This is the final version. Available on open access from MDPI via the DOI in this record ; Data Availability Statement: Restrictions apply to the availability of the presented data. ; Findings of Iron Age metallurgical activities related to tin metal and mining are very rare. In the present work, we present a detailed study of the Outeiro de Baltar hillfort, dated to the Late Iron Age/Early Roman period, located in a place where 20th century tin mining work took place. Elemental and microstructural analysis by portable, micro and wavelength dispersive X-ray fluorescence spectrometry (pXRF, micro-XRF and WDXRF) and scanning electron microscopy with energy dispersion spectrometer (SEM-EDS) showed that metallurgical debris found at the archaeological site is related to tin smelting and binary and ternary bronze productions. Analysis of the artefacts of diverse typologies found at the site showed that a variety of metals and alloys were in circulation and use. Samples of tin ores (cassiterite) from the region were analyzed for comparison with an archaeological tin slag from the site. The analytical results point to the production of tin metal using local cassiterite and the production of bronze by directly adding cassiterite into a smelting process. Furthermore, data of remote sensing (airborne Light Detection and Ranging (LiDAR) and historical aerial imagery) and Geographical Information System (GIS) mapping were combined with archival mining documentation and maps to retrieve a landscape context for the site. The study showed that the place of the Outeiro de Baltar hillfort (NW Iberia) was mined periodically over time. ; European Union Horizon 2020 ; COMPETE 2020 Programme ; Lisboa Regional Programme ; European Regional Development Fund ; FCT (Fundação para a Ciência e Tecnologia)
BASE
Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach. © Copyright © 2021 Behrens, Løvholt, Jalayer, Lorito, Salgado-Gálvez, Sørensen, Abadie, Aguirre-Ayerbe, Aniel-Quiroga, Babeyko, Baiguera, Basili, Belliazzi, Grezio, Johnson, Murphy, Paris, Rafliana, De Risi, Rossetto, Selva, Taroni, Del Zoppo, Armigliato, Bureš, Cech, Cecioni, Christodoulides, Davies, Dias, Bayraktar, González, Gritsevich, Guillas, Harbitz, Kânoǧlu, Macías, Papadopoulos, Polet, Romano, Salamon, Scala, Stepinac, Tappin, Thio, Tonini, Triantafyllou, Ulrich, Varini, Volpe and Vyhmeister. ; This article is based upon work from COST Action CA18109 AGITHAR, supported by COST (European Cooperation in Science and Technology). VB and PC obtained support through the VES20 Inter-Cost LTC 20020 project. MS-G obtained support through the Severo Ochoa Centers of Excellence Program (Ref. CEX 2018–000797-S). TU acknowledges funding from the European Union's Horizon 2020 research and innovation program (ChEESE project, Grant Agreement No. 823844).
BASE
Spanish Center for Particle Physics, Astroparticle and Nuclear Physics (CPAN) ; regional government (Generalitat Valenciana) ; Heidelberg University ; IFIC (U. Valencia/CSIC) ; This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments' ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
BASE
Austrian de la Recherche Scientifique ; Fonds voor Wetenschappelijk Onderzoek ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; Bulgarian Ministry of Education and Science ; CERN ; Chinese Academy of Sciences ; Ministry of Science and Technology ; National Natural Science Foundation of China ; Colombian Funding Agency (COLCIENCIAS) ; Croatian Ministry of Science, Education and Sport ; Research Promotion Foundation, Cyprus ; Ministry of Education and Research ; European Regional Development Fund, Estonia ; Academy of Finland ; Finnish Ministry of Education and Culture ; Helsinki Institute of Physics ; Institut National de Physique Nucleaire et de Physique des Particules / CNRS ; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France ; Bundesministerium fur Bildung und Forschung ; Deutsche Forschungsgemeinschaft ; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany ; General Secretariat for Research and Technology, Greece ; National Scientific Research Foundation ; National Office for Research and Technology, Hungary ; Department of Atomic Energy ; Department of Science and Technology, India ; Institute for Studies in Theoretical Physics and Mathematics, Iran ; Science Foundation, Ireland ; Istituto Nazionale di Fisica Nucleare, Italy ; Korean Ministry of Education, Science and Technology ; World Class University program of NRF, Republic of Korea ; Lithuanian Academy of Sciences ; CINVESTAV ; CONACYT ; SEP ; UASLP-FAI ; Ministry of Business, Innovation and Employment, New Zealand ; Pakistan Atomic Energy Commission ; Ministry of Science and Higher Education ; National Science Centre, Poland ; Fundacao para a Ciencia e a Tecnologia, Portugal ; JINR, Dubna ; Ministry of Education and Science of the Russian Federation ; Federal Agency of Atomic Energy of the Russian Federation ; Russian Academy of Sciences ; Russian Foundation for Basic Research ; Ministry of Education, Science and Technological Development of Serbia ; Secretaria de Estado de Investigacion, Desarrollo e Innovacion ; Programa Consolider-Ingenio, Spain ; ETH Board ; ETH Zurich ; PSI ; SNF ; UniZH ; Canton Zurich ; SER ; National Science Council, Taipei ; Thailand Center of Excellence in Physics ; Institute for the Promotion of Teaching Science and Technology of Thailand ; Special Task Force for Activating Research ; National Science and Technology Development Agency of Thailand ; Scientific and Technical Research Council of Turkey ; Turkish Atomic Energy Authority ; Science and Technology Facilities Council, U.K. ; US Department of Energy ; US National Science Foundation ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of Czech Republic ; Council of Science and Industrial Research, India ; Compagnia di San Paolo (Torino) ; HOMING PLUS programme of Foundation for Polish Science ; EU, Regional Development Fund ; Thalis and Aristeia programmes ; EU-ESF ; Greek NSRF ; Ministry of Education and ResearchSF0690030s09 ; A measurement of the Z gamma -> nu(nu) over bar gamma cross section in pp collisions at root s = 7 TeV is presented, using data corresponding to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. This measurement is based on the observation of events with an imbalance of transverse energy in excess of 130 GeV and a single photon in the absolute pseudorapidity range vertical bar eta vertical bar nugamma production cross section is measured to be 21.1 +/- 4.2(stat.)+/- 4.3(syst.)+/- 0.5(lum.)fb, which agrees with the standard model prediction of 21.9 +/- 1.1 fb. The results are combined with the CMS measurement of Z gamma production in the l(+)l(-)gamma final state (where l is an electron or a muon) to yield the most stringent limits to date on triple gauge boson couplings. vertical bar h(3)(Z)vertical bar < 2.7 x 10(-3), vertical bar h(4)(Z)vertical bar < 1.3 x 10(-5) for ZZ gamma and vertical bar h(3)(gamma)vertical bar < 2.9 x 10(-3), vertical bar h(4)(gamma)vertical bar < 1.5 x 10(-5) for Z gamma gamma couplings.
BASE
FMSR (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN (China) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; RPF (Cyprus) ; Academy of Sciences and NICPB (Estonia) ; Academy of Finland, ME, and HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NKTH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; NRF (Korea) ; LAS (Lithuania) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; PAEC (Pakistan) ; SCSR (Poland) ; FCT (Portugal) ; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan) ; MST (Russia) ; MAE (Russia) ; MSTDS (Serbia) ; MICINN ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; NSC (Taipei) ; TUBITAK ; TAEK (Turkey) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; European Union ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.
BASE
BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN ; CAS (China) ; MOST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; Marie-Curie programme ; European Research Council (European Union) ; Leventis Foundation ; A. P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS programme of the Foundation for Polish Science ; European Union, Regional Development Fund ; Mobility Plus programme of the Ministry of Science and Higher Education ; National Science Center (Poland) ; Thalis programme - EU-ESF ; Aristeia programme - EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; Programa Clarin-COFUND del Principado de Asturias ; Rachadapisek Sompot Fund for Postdoctoral Fellowship (Thailand) ; Chulalongkorn University (Thailand) ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; EPLANET (European Union) ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2013/11/B/ST2/04202 ; National Science Center (Poland): 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/ 03998 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Welch Foundation: C-1845 ; The invariance of the standard model (SM) under the CPT transformation predicts equality of particle and antiparticle masses. This prediction is tested by measuring the mass difference between the top quark and antiquark (Delta m(t) = m(t) - m((t) over bar)) that are produced in pp collisions at a center-of-mass energy of 8 TeV, using events with a muon or an electron and at least four jets in the final state. The analysis is based on data corresponding to an integrated luminosity of 19.6 fb(-1) collected by the CMS experiment at the LHC, and yields a value of Delta m(t) = 0.15 0.19 (stat) +/- 0.09(syst) GeV, which is consistent with the SM expectation. This result is significantly more precise than previously reported measurements. (C) 2017 The Author(s). Published by Elsevier B.V.
BASE
BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN ; CAS (China) ; MOST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Scientific and Industrial Research, India ; HOMING PLUS programme of Foundation For Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Thalis programme ; Aristeia programme ; EU-ESF ; Greek NSRF ; National Priorities Research Program by Qatar National Research Fund ; Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (p(T)) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (H-T), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb (1). The measured cross sections are compared to predictions from Monte Carlo generators, MADGRAPH + PYTHIA and SHERPA, and to next-to-leading-order calculations from BLACKHAT + SHERPA. The differential cross sections are found to be in agreement with the predictions, apart from the p(T) distributions of the leading jets at high p(T) values, the distributions of the H-T at high-H-T and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
BASE
BMWFW (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; MES (Bulgaria) ; CERN (China) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; OTKA (Hungary) ; NIH (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; NRF (Republic of Korea) ; WCU (Republic of Korea) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; UASLP-FAI (Mexico) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; Swiss Funding Agencies (Switzerland) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TUBITAK (Turkey) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom) ; DOE (USA) ; NSF (USA) ; Marie-Curie programme ; European Research Council ; EPLANET (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Council of Science and Industrial Research, India ; HOMING PLUS programme of Foundation For Polish Science ; European Union, Regional Development Fund ; Compagnia di San Paolo (Torino) ; Thalis and Aristeia programmes ; EU-ESF ; Greek NSRF ; A measurement of the inclusive ZZ production cross section and constraints on anomalous triple gauge couplings in proton-proton collisions at root s = 8 TeV are presented. The analysis is based on a data sample, corresponding to an integrated luminosity of 19.6 fb(-1), collected with the CMS experiment at the LHC. The measurements are performed in the leptonic decay modes ZZ -> lll'l', where = e, mu and l'= e, mu, tau. The measured total cross section sigma(pp -> ZZ) = 7.7 +/- 0.5 (stat) (0)(-0.4)(+0.5) (syst) +/- 0.4 (theo) +/- 0.2 (lumi) pb, for both Z bosons produced in the mass range 60 < m(z) < 120 GeV, is consistent with standard model predictions. Differential cross sections are measured and well described by the theoretical predictions. The invariant mass distribution of the four-lepton system is used to set limits on anomalous ZZZ and ZZ gamma couplings at the 95% confidence level: -0.004 < f(4)(Z), < 0.004, -0.004 < f(5)(Z) < 0.004, -0.005 < f(5)(Z) < 0.005, and -0.005 < f(5)(Y) < 0.005. (C) 2014 The Authors. Published by Elsevier B.V.
BASE