13C—methyl formate : observations of a sample of high mass starforming regions including Orion—KL and spectroscopic characterization
We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic centre for methyl formate, HCOOCH3, and its isotopologues H13COOCH3 and HCOO13CH3. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4 GHz. Based on the APEX observations, we report tentative detections of the 13C-methyl formate isotopologue HCOO13CH3 towards the following four massive star-forming regions: Sgr B2(N-LMH), NGC 6334 IRS 1, W51 e2 and G19.61-0.23. In addition, we have used the 1 mm ALMA science verification observations of Orion-KL and confirm the detection of the 13C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the 12C/13C isotope ratio in methyl formate toward Orion-KL Compact Ridge and Hot Core-SW components (68.4±10.1 and 71.4±7.8, respectively) are, for both the 13C-methyl formate isotopologues, commensurate with the average 12C/13C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the 12C/13C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H13COOCH3 and HCOO13CH3 species. New spectroscopic data for both isotopomers H13COOCH3 and HCOO13CH3, presented in this study, has made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time. ; This work was supported by the National Science Foundation under grant 1008800. We are grateful to the Ministerio de Economia y Competitividad of Spain for the financial support through grant No. FIS2011-28738-C02-02 and to the French Government through grant No. ANR-08-BLAN-0054 and the French PCMI (Programme National de Physique Chimie du Milieu Interstellaire). This paper makes use of the following ALMA data: ADS/JAO. ALMA#2011.0.00009.SV.ALMAis a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. C.F. thanks Dahbia Talbi, Eric Herbst, and Anthony Remijan for enlightening discussions. Finally, we thank the anonymous referee for helpful comments.