Harnessing Big Data in Food Safety
In: Food Microbiology and Food Safety Series
Intro -- Preface -- Contents -- 1 Machine Learning Application in Food Safety, Production, and Quality -- 1.1 Introduction -- 1.2 An Introduction to Food Supply Chain -- 1.2.1 Food Safety -- 1.2.1.1 Foodborne Illness -- 1.2.1.2 Foodborne Disease Outbreaks -- 1.2.2 Food Spoilage and Quality -- 1.2.2.1 Food Authenticity -- 1.2.2.2 Food Post-harvesting -- 1.2.3 Food Production Process -- 1.2.3.1 Food Harvesting -- 1.2.3.2 Food Packaging -- 1.2.3.3 Food Traceability -- 1.2.3.4 Food Distribution -- 1.2.3.5 Food Storage -- 1.3 An Introduction to Machine Learning -- 1.3.1 Machine Learning Applications in Food Safety -- 1.3.2 Machine Learning Applications in Food Quality -- 1.3.3 Machine Learning Applications in Food Production -- 1.4 Conclusion -- References -- 2 Foodborne Bacterial PathogenBig Data - Genomic Analysis -- 2.1 Introduction -- 2.2 Whole Genome Sequencing -- 2.2.1 WGS in Source Attribution -- 2.2.2 WGS in Disease Surveillance -- 2.2.3 Antimicrobial Resistance, Virulence Potential, and Risk Analysis -- 2.2.4 WGS Technologies -- 2.2.4.1 First-Generation Sequencing: Sanger Shotgun Approach -- 2.2.4.2 Second-Generation Sequencing: The Massively Parallel Approach -- 2.2.4.3 Third-Generation Sequencing: The Long-Read Approach -- 2.3 Bioinformatics: Algorithms and Databases -- 2.4 Future Opportunities and Challenges for WGS -- 2.4.1 Predicting Emerging Treats -- 2.4.2 Low- and Middle-Income Countries -- 2.4.3 Culture-Independent Diagnostic Tests -- 2.4.3.1 Metagenomic Sequencing -- References -- 3 Foodborne Viral Pathogen Big Data: Genomic Analysis -- 3.1 Introduction -- 3.1.1 Norovirus -- 3.1.2 HAV -- 3.1.3 HEV -- 3.1.4 SARS-CoV-2 -- 3.1.5 WGS -- 3.2 Applications -- 3.2.1 Surveillance and Source Attribution -- 3.2.2 Analysis of Variants and Viral Evolution -- 3.2.3 Predictive Analytics -- 3.3 Conclusion and Future Perspectives -- References.