WOS: 000318232000057 ; We report on a multisite photometric campaign on the high-amplitude delta Scuti star V2367 Cyg in order to determine the pulsation modes. We also used high-dispersion spectroscopy to estimate the stellar parameters and projected rotational velocity. Time series multicolour photometry was obtained during a 98-d interval from five different sites. These data were used together with model atmospheres and non-adiabatic pulsation models to identify the spherical harmonic degree of the three independent frequencies of highest amplitude as well as the first two harmonics of the dominant mode. This was accomplished by matching the observed relative light amplitudes and phases in different wavebands with those computed by the models. In general, our results support the assumed mode identifications in a previous analysis of Kepler data. ; South African National Research FoundationNational Research Foundation - South Africa [73446]; NRF; Bulgarian NSFNational Science Fund of Bulgaria [DO 02-85, DO 02-362, DDVU 02/40-2010]; South African Astronomical ObservatoryNational Research Foundation - South Africa; UNAMUniversidad Nacional Autonoma de Mexico [PAPIIT IN104612]; CONACyTConsejo Nacional de Ciencia y Tecnologia (CONACyT) [CC-118611]; European UnionEuropean Union (EU); Autonomous Region of the Aosta Valley; Italian Department for Work, Health and Pensions; Regional Government of the Aosta Valley; Town Municipality of Nus; Mont Emilius Community; National Research Foundation of South AfricaNational Research Foundation - South Africa ; CU sincerely thanks the South African National Research Foundation for the prize of innovation post doctoral fellowship with the grant number 73446. TG would like to thank NRF Equipment-Related Mobility Grant-2011 for travel to Turkey to carry out the photometric observations. IS and II gratefully acknowledge the partial support from Bulgarian NSF under grant DO 02-85. DD acknowledges for the support of grants DO 02-362 and DDVU 02/40-2010 of Bulgarian NSF. LAB thanks the South African National Research Foundation and the South African Astronomical Observatory for generous financial support. HAK acknowledges Carlos Vargas-Alvarez, Michael J. Lundquist, Garrett Long, Jessie C. Runnoe, Earl S. Wood, Michael J. Alexander for helping with the observations at WIRO. BY wishes to thank EUO for the allocation time of observations during the campaign. LFM acknowledges financial support from the UNAM under grant PAPIIT IN104612 and from CONACyT by way of grant CC-118611. MD, AC and DC are supported by grants provided by the European Union, the Autonomous Region of the Aosta Valley and the Italian Department for Work, Health and Pensions. The OAVdA is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the Mont Emilius Community. TEP acknowledges support from the National Research Foundation of South Africa. This study made use of IRAF Data Reduction and Analysis System and the Vienna Atomic Line Data Base (VALD) services. The authors thank Dr Zima for providing the FAMIAS code.
WOS: 000318232000057 ; We report on a multisite photometric campaign on the high-amplitude delta Scuti star V2367 Cyg in order to determine the pulsation modes. We also used high-dispersion spectroscopy to estimate the stellar parameters and projected rotational velocity. Time series multicolour photometry was obtained during a 98-d interval from five different sites. These data were used together with model atmospheres and non-adiabatic pulsation models to identify the spherical harmonic degree of the three independent frequencies of highest amplitude as well as the first two harmonics of the dominant mode. This was accomplished by matching the observed relative light amplitudes and phases in different wavebands with those computed by the models. In general, our results support the assumed mode identifications in a previous analysis of Kepler data. ; South African National Research FoundationNational Research Foundation - South Africa [73446]; NRF; Bulgarian NSFNational Science Fund of Bulgaria [DO 02-85, DO 02-362, DDVU 02/40-2010]; South African Astronomical ObservatoryNational Research Foundation - South Africa; UNAMUniversidad Nacional Autonoma de Mexico [PAPIIT IN104612]; CONACyTConsejo Nacional de Ciencia y Tecnologia (CONACyT) [CC-118611]; European UnionEuropean Union (EU); Autonomous Region of the Aosta Valley; Italian Department for Work, Health and Pensions; Regional Government of the Aosta Valley; Town Municipality of Nus; Mont Emilius Community; National Research Foundation of South AfricaNational Research Foundation - South Africa ; CU sincerely thanks the South African National Research Foundation for the prize of innovation post doctoral fellowship with the grant number 73446. TG would like to thank NRF Equipment-Related Mobility Grant-2011 for travel to Turkey to carry out the photometric observations. IS and II gratefully acknowledge the partial support from Bulgarian NSF under grant DO 02-85. DD acknowledges for the support of grants DO 02-362 and DDVU 02/40-2010 of Bulgarian NSF. LAB thanks the South African National Research Foundation and the South African Astronomical Observatory for generous financial support. HAK acknowledges Carlos Vargas-Alvarez, Michael J. Lundquist, Garrett Long, Jessie C. Runnoe, Earl S. Wood, Michael J. Alexander for helping with the observations at WIRO. BY wishes to thank EUO for the allocation time of observations during the campaign. LFM acknowledges financial support from the UNAM under grant PAPIIT IN104612 and from CONACyT by way of grant CC-118611. MD, AC and DC are supported by grants provided by the European Union, the Autonomous Region of the Aosta Valley and the Italian Department for Work, Health and Pensions. The OAVdA is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the Mont Emilius Community. TEP acknowledges support from the National Research Foundation of South Africa. This study made use of IRAF Data Reduction and Analysis System and the Vienna Atomic Line Data Base (VALD) services. The authors thank Dr Zima for providing the FAMIAS code.
Context. Proxima Centauri is the closest star to the Sun and it is known to host an Earth-like planet in its habitable zone; very recently a second candidate planet was proposed based on radial velocities. At quadrature, the expected projected separation of this new candidate is larger than 1 arcsec, making it a potentially interesting target for direct imaging.Aims. While identification of the optical counterpart of this planet is expected to be very difficult, successful identification would allow for a detailed characterization of the closest planetary system.Methods. We searched for a counterpart in SPHERE images acquired over four years through the SHINE survey. In order to account for the expected large orbital motion of the planet, we used a method that assumes the circular orbit obtained from radial velocities and exploits the sequence of observations acquired close to quadrature in the orbit. We checked this with a more general approach that considers Keplerian motion, called K-stacker.Results. We did not obtain a clear detection. The best candidate has signal-to-noise ratio (S/N) = 6.1 in the combined image. A statistical test suggests that the probability that this detection is due to random fluctuation of noise is away from the astrometric motion of Proxima as measured from early Gaia data. This, together with the unexpectedly high flux associated with our direct imaging detection, means we cannot confirm that our candidate is indeed Proxima c.Conclusions. On the other hand, if confirmed, this would be the first observation in imaging of a planet discovered from radial velocities and the second planet (after Fomalhaut b) of reflecting circumplanetary material. Further confirmation observations should be done as soon as possible. ; Progetto Premiale 2015 FRONTIERA of the Italian Ministry of Education, University, and Research OB.FU. 1.05.06.11 CONICYT + PAI/Convocatoria nacional subvención a la instalación en la academia, convocatoria 2017 + Folio PAI77170087 European Union (EU) 664931 Swiss National Science Foundation (SNSF) PZ00P2180098 Ministry of Education, Universities and Research (MIUR) Research Projects of National Relevance (PRIN) Programme National de Planetologie (PNP) Programme National de Physique Stellaire (PNPS) of CNRS-INSU French National Research Agency (ANR) ANR10 LABX56 Centre National de la Recherche Scientifique (CNRS) French National Research Agency (ANR) ANR-14-CE330018 ESO Centre National de la Recherche Scientifique (CNRS) MPIA (Germany) Istituto Nazionale Astrofisica (INAF) FINES (Switzerland) NOVA (Netherlands) European Union (EU) RII3-Ct-2004-001566 226604 312430 European Union (EU) RII3-Ct-2004-001566 226604 312430 French National Research Agency (ANR) ANR-15-IDEX-02
Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with Pb = 4.01593 ± 0.00050 d and Pc = 10.56103 ± 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, Teff = 5731 ± 66, log g = 4.38 ± 0.11 dex, and [Fe/H] = 0.26 ± 0.05 dex, and thus the mass and radius of K2-38, Ma = 1.03-0.02+0.04 MaS and Ra = 1.06-0.06+0.09 RaS. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with RP = 1.54 ± 0.14 RaS and Mp = 7.3-1.0+1.1 MaS, and K2-38c as a sub-Neptune with RP = 2.29 ± 0.26 RaS and Mp = 8.3-1.3+1.3 MaS. Combining the radius and mass measurements, we derived a mean density of ρp = 11.0-2.8+4.1 g cm-3 for K2-38b and ρp = 3.8-1.1+1.8 g cm-3 for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity. ; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s-1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M? . In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M? . We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s-1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M? . We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M? at periods shorter than 50 days. ; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
Context. The bright star π Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M· planet at ∼0.07 au and a sub-stellar companion on a ∼2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of π Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around π Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s-1) allow for a precise retrieval of the Doppler signal induced by π Men c. The residuals show a root mean square of 1.2 m s-1, which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than ∼2 M· within the orbit of π Men c). We improve the ephemeris of π Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of π Men b with high precision (ib =45.8-1.1+1.4 deg). This leads to the precise measurement of its absolute mass mb =14.1-0.4+0.5 MJup, indicating that π Men b can be classified as a brown dwarf. Conclusions. The π Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the π Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of π Men b contributes to make the brown dwarf desert a bit greener. ; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims. In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars. ; With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)