From one of America's foremost experts on weather and climate change and a senior research scientist with Climate Central, comes this work, a book that predicts what different parts of the world will look like in the year 2050 if current levels of carbon emissions are maintained --
A persistent multi-year drought in Central and Southwest Asia has affected close to 60 million people as of November 2001. Chronic political instability in many parts of this region and the recent military action in Afghanistan have further complicated the situation. This report provides a climatic perspective on the severity and spatial extent of the ongoing drought and its social and economic impacts. The target audience for this report includes national, regional and international policymakers, humanitarian relief agencies, members of the research community as well as others with a general interest in Central and Southwest Asia and the causes and consequences of the persistent drought in the region. The report discusses underlying climatic mechanisms that might explain the causes for the persistent drought, and presents seasonal climate forecasts and their implications for the region. The principal conclusions of this report are as follows: Central and Southwest Asia represents the largest region of persistent drought over the past three years anywhere in the world. From a regional perspective, the ongoing drought is the most severe in the past several decades. Significant shortfalls in precipitation have led to widespread social and economic impacts, particularly in Iran, Afghanistan, Western Pakistan, Tajikistan, Uzbekistan and Turkmenistan. Agriculture, animal husbandry, water resources, and public health have been particularly stressed throughout the region. Preliminary analysis suggests that the drought is related to large-scale variations in the climate across the Indian and Pacific Oceans, including the recent "La Niña" in the eastern Pacific. Current seasonal climate forecasting skill in Central and Southwest Asia is modest. IRI seasonal forecasts for the period November 2001-April 2002 are consequently for climatology or equal likelihood of above-, near-, or below-normal precipitation in the region. While not indicative of any pronounced trends, a climatology forecast is less dire than one indicating enhanced probabilities for below normal precipitation.
Abstract Local television (TV) weathercasters are a potentially promising source of climate education, in that weather is the primary reason viewers watch local TV news, large segments of the public trust TV weathercasters as a source of information about global warming, and extreme weather events are increasingly common (Leiserowitz et al.; U.S. Global Change Research Program). In an online experiment conducted in two South Carolina cities (Greenville, n = 394; Columbia, n = 352) during and immediately after a summer heat wave, the effects on global warming risk perceptions were examined following exposure to a TV weathercast in which a weathercaster explained the heat wave as a local manifestation of global warming versus exposure to a 72-h forecast of extreme heat. No main effect of the global warming video on learning was found. However, a significant interaction effect was found: subjects who evaluated the TV weathercaster more positively were positively influenced by the global warming video, and viewers who evaluated the weathercaster less positively were negatively influenced by the video. This effect was strongest among politically conservative viewers. These results suggest that weathercaster-delivered climate change education can have positive, albeit nuanced, effects on TV-viewing audiences.
Abstract. On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India – a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution would decrease the impacts.