Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot
This article belongs to the Special Issue Autophagy in Cancer. ; Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples. ; This work was supported by grants from the Bernese Cancer League, "Stiftung für klinisch-experimentelle Tumorforschung", and the Werner and Hedy Berger-Janser Foundation for Cancer Research (to M.H.); by Institute of Health Carlos III (ISCIII) and FEDER funds from the EU (PI14/01085 and PI17/00093) and supported by Miguel Servet contract by ISCIII and FSE funds (CPII16/00023) (to M.M.); from the Spanish Ministry of Science, Innovation and Universities (RTI2018-096748-B-100 to N.A.); from the University Professor Training Fellowship, Ministry of Science, Innovation and University, Government of Spain (FPU17/00026) (to P.C.O); from the ISCIII (PI16/00090 and PI19/01266) and the Andalusian Government (Consejería de Igualdad, Salud y Políticas Sociales, PI-0198-2016) for their financial support, and from the Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd) founded by the ISCIII and co-financed by European Development Regional Fund (EDRF) "A way to achieve Europe" for their financial support (to J.M.), from Breakthrough Cancer Research, Ireland funding (to S.L.M); from the PI18/00442 grant integrated into the State Plan for R & D + I2013-2016 and funded by the ISCIII and the ERDF, a way to make Europe (to G.V.); from the Luxembourg National Research Fund (C18/BM/12670304/COMBATIC to B.J.); from the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, by the European Regional Development Fund (FEDER), through the Competitiveness Factors Operational Programme (COMPETE) (NORTE-01-0145-FEDER-000013) and from the projects POCI-01-0145-FEDER-028159 and POCI-01-0145-FEDER-030782 by FEDER, through the COMPETE (to P.L.); from National funds, through the Foundation for Science and Technology (FCT) (to P.L.); from ARRS—the Slovenian research agency, programme P1-0140: Proteolysis and its regulation (led by B. Turk) (to E.Ž.); from the Swiss Cancer Research (KFS-3360-02-2014) (to A.P, and M.P.T.) (KFS-3409-02-2014), and the Swiss National Science Foundation (31003A_173219) (to M.P.T.).