Open Science is emerging as a force that by democratizing access to research and its products will produce advantages for the society, economy and the research system, e.g. "more reliable" and efficient science, faster and wider innovation, societal challenges-driven science. BlueBRIDGE is a European funded project realizing the Open Science modus operandi in the context of Blue Growth Societal Challenge. This presentation is to describe how BlueBRIDGE can support capacity building in interdisciplinary research communities.
The Open Science movement is promising to revolutionise the way science is conducted with the goal to make it more fair, solid and democratic. This revolution is destined to remain just a wish if it is not supported by changes in culture and practices as well as in enabling technologies. This paper describes the gCube offering to enact Open Sciencefriendly Virtual Research Environments. In particular, the paper describes how a complete solution suitable for realising Open Science practices is achieved by a social networking collaborative environment in conjunction with a shared workspace, an open data analytics platform, and
The COVID-19 pandemic provides a major opportunity to study fishing effort dynamics and to assess the response of the industry to standard and remedial actions. Knowing a fishing fleet's capacity to compensate for effort reduction (i.e., its resilience) allows differentiating governmental regulations by fleet, i.e., imposing stronger restrictions on the more resilient and weaker restrictions on the less resilient. In the present research, the response of the main fishing fleets of the Adriatic Sea to fishing hour reduction from 2015 to 2020 was measured. Fleet activity per gear type was inferred from monthly Automatic Identification System data. Pattern recognition techniques were applied to study the fishing effort trends and barycentres by gear. The beneficial effects of the lockdowns on Adriatic endangered, threatened and protected (ETP) species were also estimated. Finally, fleet effort series were examined through a stock assessment model to demonstrate that every Adriatic fishing fleet generally behaves like a stock subject to significant stress, which was particularly highlighted by the pandemic. Our findings lend support to the notion that the Adriatic fleets can be compared to predators with medium-high resilience and a generally strong impact on ETP species.
Since January 2014, the reformed Common Fisheries Policy (CFP) of the European Union is legally binding for all Member States. It prescribes the end of overfishing and the rebuilding of all stocks above levels that can produce maximum sustainable yields (MSY). This study examines the current status, exploitation pattern, required time for rebuilding, future catch, and future profitability for 397 European stocks. Fishing pressure and biomass were estimated from 2000 to the last year with available data in 10 European ecoregions and 2 wide ranging regions. In the last year with available data, 69% of the 397 stocks were subject to ongoing overfishing and 51% of the stocks were outside of safe biological limits. Only 12% of the stocks fulfilled the prescriptions of the CFP. Fishing pressure has decreased since 2000 in some ecoregions but not in others. Barents Sea and Norwegian Sea have the highest percentage (>60%) of sustainably exploited stocks that are capable of producing MSY. In contrast, in the Mediterranean Sea, fewer than 20% of the stocks are exploited sustainably. Overfishing is still widespread in European waters and current management, which aims at maximum sustainable exploitation, is unable to rebuild the depleted stocks and results in poor profitability. This study examines four future exploitation scenarios that are compatible with the CFP. It finds that exploitation levels of 50–80% of the maximum will rebuild stocks and lead to higher catches than currently obtained, with substantially higher profits for the fishers.