Over the last three decades, Indigenous peoples in the CANZUS countries (Canada, Australia, New Zealand, and the United States) have been reclaiming self-government as an Indigenous right and practice. In the process, they have been asserting various forms of Indigenous nationhood. This article argues that this development involves a common set of activities on the part of Indigenous peoples: (1) identifying as a nation or a people (determining who the appropriate collective "self" is in self-determination and self-government); (2) organizing as a political body (not just as a corporate holder of assets); and (3) acting on behalf of Indigenous goals (asserting and exercising practical decision-making power and responsibility, even in cases where central governments deny recognition). The article compares these activities in the four countries and argues that, while contexts and circumstances differ, the Indigenous politics of self-government show striking commonalities across the four. Among those commonalities: it is a positional as opposed to a distributional politics; while not ignoring individual welfare, it measures success in terms of collective power; and it focuses less on what central governments are willing to do in the way of recognition and rights than on what Indigenous nations or communities can do for themselves.
Discusses the complex nature of identity among the people of the Caucasus region before & after the dissolution of the USSR. Despite Soviet attempts to impose a national communist identity, communal identities in the Caucasus remained intact; in some areas, ethnic identity was encouraged by the Soviet regime as a means to counteract Islam, which was considered a greater threat. The USSR's dissolution eroded Soviet identity, which served as a unifying factor among the many distinct Caucasian peoples now living in the four states of Russia, Azerbaijan, Armenia, & Georgia. Individuals must now look to their nation, communal group, or Islam for their identity. It is argued that this search for identity has had a significant impact on peace in the region & has been at the heart of most of the post-Cold War conflicts. Situations resulting in the polarization of identities are described, & conflict prevention strategies are suggested. J. Lindroth
In the Anthropocene, social processes have become critical to understanding planetary-scale Earth system dynamics. The conceptual foundations of Earth system modelling have externalised social processes in ways that now hinder progress in understanding Earth resilience and informing governance of global environmental change. New approaches to global modelling are needed to address these challenges, but the current modelling landscape is highly diverse and heterogeneous, ranging from purely biophysical Earth System Models, to hybrid macro-economic Integrated Assessments Models, to a plethora of models of socio-cultural dynamics. World-Earth models, currently not yet available, will need to integrate all these elements, so future World-Earth modellers require a structured approach to identify, classify, select, and combine model components. Here, we develop taxonomies for ordering the multitude of societal and biophysical subsystems and their interactions. We suggest three taxa for modelled subsystems: (i) biophysical, where dynamics is usually represented by "natural laws" of physics, chemistry or ecology (i.e., the usual components of Earth system models), (ii) socio-cultural, dominated by processes of human behaviour, decision making and collective social dynamics (e.g., politics, institutions, social networks), and (iii) socio-metabolic, dealing with the material interactions of social and biophysical subsystems (e.g., human bodies, natural resource and agriculture). We show how higher-order taxonomies for interactions between two or more subsystems can be derived, highlighting the kinds of social-ecological feedback loops where new modelling efforts need to be directed. As an example, we apply the taxonomy to a stylised World-Earth system model of socially transmitted discount rates in a greenhouse gas emissions game to illustrate the effects of social-ecological feedback loops that are usually not considered in current modelling efforts. The proposed taxonomy can contribute to guiding the design and operational development of more comprehensive World-Earth models for understanding Earth resilience and charting sustainability transitions within planetary boundaries and other future trajectories in the Anthropocene.
Background: Misinformation about COVID-19 is common and has been spreading rapidly across the globe through social media platforms and other information systems. Understanding what the public knows about COVID-19 and identifying beliefs based on misinformation can help shape effective public health communications to ensure efforts to reduce viral transmission are not undermined. Objective: This study aimed to investigate the prevalence and factors associated with COVID-19 misinformation in Australia and their changes over time. Methods: This prospective, longitudinal national survey was completed by adults (18 years and above) across April (n=4362), May (n=1882), and June (n=1369) 2020. Results: Stronger agreement with misinformation was associated with younger age, male gender, lower education level, and language other than English spoken at home (P<.01 for all). After controlling for these variables, misinformation beliefs were significantly associated (P<.001) with lower levels of digital health literacy, perceived threat of COVID-19, confidence in government, and trust in scientific institutions. Analyses of specific government-identified misinformation revealed 3 clusters: prevention (associated with male gender and younger age), causation (associated with lower education level and greater social disadvantage), and cure (associated with younger age). Lower institutional trust and greater rejection of official government accounts were associated with stronger agreement with COVID-19 misinformation. Conclusions: The findings of this study highlight important gaps in communication effectiveness, which must be addressed to ensure effective COVID-19 prevention.
Linking knowledge with action for effective societal responses to persistent problems of unsustainability requires transformed, more open knowledge systems. Drawing on a broad range of academic and practitioner experience, we outline a vision for the coordination and organization of knowledge systems that are better suited to the complex challenges of sustainability than the ones currently in place. This transformation includes inter alia: societal agenda setting, collective problem framing, a plurality of perspectives, integrative research processes, new norms for handling dissent and controversy, better treatment of uncertainty and of diversity of values, extended peer review, broader and more transparent metrics for evaluation, effective dialog processes, and stakeholder participation. We set out institutional and individual roadmaps for achieving this vision, calling for well-designed, properly resourced, longitudinal, international learning programs.
The planetary boundaries framework defines the "safe operating space for humanity" represented by nine global processes that can destabilize the Earth System if perturbed. The water planetary boundary attempts to provide a global limit to anthropogenic water cycle modifications, but it has been challenging to translate and apply it to the regional and local scales at which water problems and management typically occur. We develop a cross‐scale approach by which the water planetary boundary could guide sustainable water management and governance at subglobal contexts defined by physical features (e.g., watershed or aquifer), political borders (e.g., city, nation, or group of nations), or commercial entities (e.g., corporation, trade group, or financial institution). The application of the water planetary boundary at these subglobal contexts occurs via two approaches: (i) calculating fair shares, in which local water cycle modifications are compared to that context's allocation of the global safe operating space, taking into account biophysical, socioeconomic, and ethical considerations; and (ii) defining a local safe operating space, in which interactions between water stores and Earth System components are used to define local boundaries required for sustaining the local water system in stable conditions, which we demonstrate with a case study of the Cienaga Grande de Santa Marta wetlands in Colombia. By harmonizing these two approaches, the water planetary boundary can ensure that water cycle modifications remain within both local and global boundaries and complement existing water management and governance approaches.
ANPCyT, Argentina ; YerPhI, Armenia ; ARC, Australia ; BMWFW, Austria ; FWF, Austria ; ANAS, Azerbaijan ; SSTC, Belarus ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; NSERC, Canada ; NRC, Canada ; CFI, Canada ; CERN ; CONICYT, Chile ; CAS, China ; MOST, China ; NSFC, China ; COLCIENCIAS, Colombia ; MSMT CR, Czech Republic ; MPO CR, Czech Republic ; VSC CR, Czech Republic ; DNRF, Denmark ; DNSRC, Denmark ; IN2P3-CNRS, CEA-DRF/IRFU, France ; SRNSFG, Georgia ; BMBF, Germany ; HGF, Germany ; MPG, Germany ; GSRT, Greece ; RGC, Hong Kong SAR, China ; ISF, Israel ; Benoziyo Center, Israel ; INFN, Italy ; MEXT, Japan ; JSPS, Japan ; CNRST, Morocco ; NWO, Netherlands ; RCN, Norway ; MNiSW, Poland ; NCN, Poland ; FCT, Portugal ; MNE/IFA, Romania ; MES of Russia, Russian Federation ; NRC KI, Russian Federation ; JINR ; MESTD, Serbia ; MSSR, Slovakia ; ARRS, Slovenia ; MIZS, Slovenia ; DST/NRF, South Africa ; MINECO, Spain ; SRC, Sweden ; Wallenberg Foundation, Sweden ; SERI, Switzerland ; SNSF, Switzerland ; Canton of Bern, Switzerland ; MOST, Taiwan ; TAEK, Turkey ; STFC, United Kingdom ; DOE, United States of America ; NSF, United States of America ; BCKDF, Canada ; CANARIE, Canada ; CRC, Canada ; Compute Canada, Canada ; COST, European Union ; ERC, European Union ; ERDF, European Union ; Horizon 2020, European Union ; Marie Sk lodowska-Curie Actions, European Union ; Investissements d' Avenir Labex and Idex, ANR, France ; DFG, Germany ; AvH Foundation, Germany ; Greek NSRF, Greece ; BSF-NSF, Israel ; GIF, Israel ; CERCA Programme Generalitat de Catalunya, Spain ; Royal Society, United Kingdom ; Leverhulme Trust, United Kingdom ; BMBWF (Austria) ; FWF (Austria) ; FNRS (Belgium) ; FWO (Belgium) ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FAPERGS (Brazil) ; MES (Bulgaria) ; CAS (China) ; MoST (China) ; NSFC (China) ; COLCIENCIAS (Colombia) ; MSES (Croatia) ; CSF (Croatia) ; RPF (Cyprus) ; SENESCYT (Ecuador) ; MoER (Estonia) ; ERC IUT (Estonia) ; ERDF (Estonia) ; Academy of Finland (Finland) ; MEC (Finland) ; HIP (Finland) ; CEA (France) ; CNRS/IN2P3 (France) ; BMBF (Germany) ; DFG (Germany) ; HGF (Germany) ; GSRT (Greece) ; NKFIA (Hungary) ; DAE (India) ; DST (India) ; IPM (Iran) ; SFI (Ireland) ; INFN (Italy) ; MSIP (Republic of Korea) ; NRF (Republic of Korea) ; MES (Latvia) ; LAS (Lithuania) ; MOE (Malaysia) ; UM (Malaysia) ; BUAP (Mexico) ; CINVESTAV (Mexico) ; CONACYT (Mexico) ; LNS (Mexico) ; SEP (Mexico) ; UASLP-FAI (Mexico) ; MOS (Montenegro) ; MBIE (New Zealand) ; PAEC (Pakistan) ; MSHE (Poland) ; NSC (Poland) ; FCT (Portugal) ; JINR (Dubna) ; MON (Russia) ; RosAtom (Russia) ; RAS (Russia) ; RFBR (Russia) ; NRC KI (Russia) ; MESTD (Serbia) ; SEIDI (Spain) ; CPAN (Spain) ; PCTI (Spain) ; FEDER (Spain) ; MOSTR (Sri Lanka) ; MST (Taipei) ; ThEPCenter (Thailand) ; IPST (Thailand) ; STAR (Thailand) ; NSTDA (Thailand) ; TAEK (Turkey) ; NASU (Ukraine) ; SFFR (Ukraine) ; STFC (United Kingdom ; DOE (U.S.A.) ; NSF (U.S.A.) ; Marie-Curie programme ; Horizon 2020 Grant (European Union) ; Leventis Foundation ; A.P. Sloan Foundation ; Alexander von Humboldt Foundation ; Belgian Federal Science Policy Office ; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium) ; Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) ; F.R.S.-FNRS (Belgium) ; Beijing Municipal Science & Technology Commission ; Ministry of Education, Youth and Sports (MEYS) of the Czech Republic ; Hungarian Academy of Sciences (Hungary) ; New National Excellence Program UNKP (Hungary) ; Council of Science and Industrial Research, India ; HOMING PLUS programme of the Foundation for Polish Science ; European Union, Regional Development Fund ; Mobility Plus programme of the Ministry of Science and Higher Education ; National Science Center (Poland) ; National Priorities Research Program by Qatar National Research Fund ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu ; Programa Severo Ochoa del Principado de Asturias ; EU-ESF ; Greek NSRF ; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand) ; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand) ; Welch Foundation ; Weston Havens Foundation (U.S.A.) ; Canton of Geneva, Switzerland ; Herakleitos programme ; Thales programme ; Aristeia programme ; European Research Council (European Union) ; Horizon 2020 Grant (European Union): 675440 ; FWO (Belgium): 30820817 ; Beijing Municipal Science & Technology Commission: Z181100004218003 ; NKFIA (Hungary): 123842 ; NKFIA (Hungary): 123959 ; NKFIA (Hungary): 124845 ; NKFIA (Hungary): 124850 ; NKFIA (Hungary): 125105 ; National Science Center (Poland): Harmonia 2014/14/M/ST2/00428 ; National Science Center (Poland): Opus 2014/13/B/ST2/02543 ; National Science Center (Poland): 2014/15/B/ST2/03998 ; National Science Center (Poland): 2015/19/B/ST2/02861 ; National Science Center (Poland): Sonata-bis 2012/07/E/ST2/01406 ; Programa Estatal de Fomento de la Investigacion Cientfica y Tecnica de Excelencia Maria de Maeztu: MDM-2015-0509 ; Welch Foundation: C-1845 ; This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| « |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.