Environment versus sustainable energy: The case of lead halide perovskite-based solar cells
Lead halide perovskites have caused a paradigm shift in state-of-the-art photovoltaic technology half a decade ago and have gained tremendous momentum ever since. Given their seemingly imminent commercialization, rigorous scrutiny regarding their potential environmental impact is becoming increasingly relevant. In light of the current need for sustainable energy resources, several start-up and spin-off companies have been established, initially promising modules on the market by the end of 2017. On the downside, lead representing approximately one third by weight of the absorber layer in such photovoltaic devices is enough reason to become wary about the potential environmental impact of their large-scale implementation. Whilst many have wondered where the acceptable boundaries lie regarding lead consumption, it remains a focal point in many discussions, as it seems almost unattainable to ban lead usage from our society. Currently listed as one of the ten chemicals of major health concern by the World Health Organization, the magnitude of misgivings expands even more as recent studies also demonstrate promising applications of lead halide perovskites in light emitting diodes, lasers, batteries, and photodetectors. Hence, there is no doubt that a discussion should be commenced on how to assess and handle the impact of lead in a new technology of such high potential. By reflecting on the historical experience gained from anthropogenic lead poisoning that is still shaping our legislatorial systems at present-day, this work investigates and carefully scrutinizes current legislation that governs the exploitation of lead halide perovskites in optoelectronic applications. Analyzing the repetitive pattern of historical lead consumption, focus is extended on creating awareness and caution toward lead halide perovskite commercialization while concurrently pointing out considerations and ambiguity in policies and regulations. Ultimately, this work aims to initialize a discussion on "if" and "how" this burgeoning class of materials can enter the consumer market. ; A.B. is a Ph.D. fellow of the Research Foundation Flanders (FWO). B.C. is a postdoctoral fellow of FWO. We thank Dirk Weiss and Andreas Wade for the fruitful discussions.