This work was supported by the German Federal Ministry of Education and Research (BMBF projects 05P2015RDFN1 and 05P15WOFNA), through the GSI-TU Darmstadt cooperation agreement, by the State of Hesse through the LOEWE center HIC for FAIR, and the Helmholtz-Gemeinschaft through the graduate school HGS-HIRe. This work was supported by the European Union by means of the European Commission within its Seventh Framework Program (FP7) via ENSAR (Contract No. 262010), and the Spanish CICYT research grants FPA2012-32443, FPA2015-64969-07387, and FPA2015-69640-C2-1-P. This work has supported by the Swedish Research Council under contract number 621-2011-5324. C.A.B. acknowledges support from the U.S. NSF grant No. 1415656 and the U.S. DOE grant No. DE-FG02-08ER41533. ; The quasi-free scattering reactions 11C(p,2p) and 10,11,12C(p,pn) have been studied in inverse kinematics at beam energies of 300–400 MeV/u at the R3B-LAND setup. The outgoing proton-proton and proton-neutron pairs were detected in coincidence with the reaction fragments in kinematically complete measurements. The efficiency to detect these pairs has been obtained from GEANT4 simulations which were tested using the 12C(p,2p) and 12C(p,pn) reactions. Experimental cross sections and momentum distributions have been obtained and compared to DWIA calculations based on eikonal theory. The new results reported here are combined with previously published cross sections for quasi-free scattering from oxygen and nitrogen isotopes and together they enable a systematic study of the reduction of single-particle strength compared to predictions of the shell model over a wide neutron-to-proton asymmetry range. The combined reduction factors show a weak or no dependence on isospin asymmetry, in contrast to the strong dependency reported in nucleon-removal reactions induced by nuclear targets at lower energies. However, the reduction factors for (p,2p) are found to be 'significantly smaller than for (p,pn) reactions for all investigated nuclei. ; publishersversion ; published
Journal of High Energy Physics 2013.12 (2013): 039 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA) ; A study of proton-proton collisions in which two b hadrons are produced in association with a Z boson is reported. The collisions were recorded at a centre-of-mass energy of 7TeV with the CMS detector at the LHC, for an integrated luminosity of 5:2 fb-1. The b hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets, permitting the study of b-hadron pair production at small angular separation. Differential cross sections are presented as a function of the angular separation of the b hadrons and the Z boson. In addition, inclusive measurements are presented. For both the inclusive and differential studies, different ranges of Z boson momentum are considered, and each measurement is compared to the predictions from different event generators at leading-order and next-to-leading-order accuracy ; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy O ce; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, conanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes nanced by EU-ESF and the Greek NSRF
ICRC is a biennial international conference in the field of Astroparticle Physics. It covers: cosmic-ray physics, solar and heliospheric physics, gamma-ray astronomy, neutrino astronomy, and dark matter physics. Publication of ICRC2017 proceedings was supported by the Korean Federation of Science and Technology Societies Grant funded by the Korean Government (Ministry of Education)
Demain Genève Place financière environnementale ? Centre logistique des multinationales minière responsables ? Premier centre d'échange des Matières Premières Secondaires (MPS) ? 3 Contrats pour Agenda 2030 Contrat 1 : Social Les engagements et volontés des pouvoirs politiques, d'obtenir des résultats tangibles dans la réduction des Gaz à Effet de Serre (GES), facteur du changement climatique à l'Agenda 2030. Applique le concept des « Mines Urbaines » dans la double boucle du cycle de vie en développement durable. Développe le CAPITAL SYMPATHIE, en notion dynamique, à la participation des citoyens comme des récupérateurs récompensés. Contrat 2 : Economique Pour se faire, Genève mutualise les acteurs industriels, financiers et associatifs, pour la plus grande transversalité dans un projet ambitieux. Recycler les métaux précieux autant que rares, présents localement dans nos biens de consommation obsolescents. Les compétences cumulées des acteurs, permettent une valorisation fine des composants, un recyclage performant préservant les matières, pour les générations futures. Contrat 3 : Environnementale Avec des procédés issus de la chimie verte, comme la capacité de l'eau supercritique, de dissocier les polymères des métaux et terres rares de façon écologique, un nouveau modèle d'extraction responsable voit jour dans le Canton de Genève. Réduisant ainsi, la pression sur l'extraction de matière vierge et par rebond une réduction significative des GES mondiaux, par l'action locale.
BACKGROUND: Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men. METHODS: In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes. RESULTS: Individual participant-level data were analysed from 980 793 adults. During 9·8 million person-years of follow-up, among participants aged between 35 and 89 years, 19 686 (25·6%) of 76 965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2·10, 95% CI 1·97-2·24) and tripled risk among women (3·00, 2·71-3·33; χ2 test for heterogeneity p<0·0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35-59 years: 2·60, 2·30-2·94) than in older individuals (aged 70-89 years: 2·01, 1·85-2·19; p=0·0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35-59 years had the highest death RR across all age and sex groups (5·55, 4·15-7·44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35-59 years, the excess absolute risk was 0·05% (95% CI 0·03-0·07) per year in women compared with 0·08% (0·05-0·10) per year in men; the corresponding excess at ages 70-89 years was 1·08% (0·84-1·32) per year in women and 0·91% (0·77-1·05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes. INTERPRETATION: Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained. FUNDING: UK Medical Research Council, British Heart Foundation, Cancer Research UK, European Union BIOMED programme, and National Institute on Aging (US National Institutes of Health). ; UK Medical Research Counci ; British Heart Foundation ; Cancer Research UK ; European Union BIOMED programme ; National Institute on Aging (US National Institutes of Health)
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and so high-quality measurements exist only for hadrons containing up and down quarks. Here we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton–proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of proton–omega baryon correlations, the effect of the strong interaction for this hadron–hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations. The large number of hyperons identified in proton–proton collisions at the LHC, together with accurate modelling of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction. ; A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientfico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science and Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenerga, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America
AbstractIntroductionEighty percent of adolescents living with perinatally and behaviourally acquired HIV live in sub‐Saharan Africa (SSA), a continent with marked economic inequality. As part of our global project describing adolescents living with perinatally acquired HIV (APH), we aimed to assess whether inequality in outcomes exists by country income group (CIG) for APH within SSA.MethodsThrough the CIPHER cohort collaboration, individual retrospective data from 7 networks and 25 countries in SSA were included. APH were included if they entered care at age <10 years (as a proxy for perinatally acquired HIV) and had follow‐up at age >10 years. World Bank CIG classification for median year of first visit was used. Cumulative incidence of mortality, transfer‐out and loss‐to‐follow‐up was calculated by competing risks analysis. Mortality was compared across CIG by Cox proportional hazards models.ResultsA total of 30,296 APH were included; 50.9% were female and 75.7% were resident in low‐income countries (LIC). Median [interquartile range (IQR)] age at antiretroviral therapy (ART) start was 8.1 [6.3; 9.5], 7.8 [6.2; 9.3] and 7.3 [5.2; 8.9] years in LIC, lower‐middle income countries (LMIC) and upper‐middle income countries (UMIC) respectively. Median age at last follow‐up was 12.1 [10.9; 13.8] years, with no difference between CIG. Cumulative incidence (95% CI) for mortality between age 10 and 15 years was lowest in UMIC (1.1% (0.8; 1.4)) compared to LIC (3.5% (3.1; 3.8)) and LMIC (3.9% (2.7; 5.4)). Loss‐to‐follow‐up was highest in UMIC (14.0% (12.9; 15.3)) compared to LIC (13.1% (12.4; 13.8)) and LMIC (8.3% (6.3; 10.6)). Adjusted mortality hazard ratios (95% CI) for APH in LIC and LMIC in reference to UMIC were 2.50 (1.85; 3.37) and 2.96 (1.90; 4.61) respectively, with little difference when restricted only to APH who ever received ART. In adjusted analyses mortality was similar for male and female APH.ConclusionsResults highlight probable inequality in mortality according to CIG in SSA even when ART was received. These findings highlight that without attention towards SDG 10 (to reduce inequality within and among countries), progress towards ensuring healthy lives and promoting wellbeing for all at all ages (SDG 3) will be hampered for APH in LIC and LMIC.
First results on the longitudinal asymmetry and its effect on the pseudorapidity distributions in Pb–Pb collisions at √sNN = 2.76 TeV at the Large Hadron Collider are obtained with the ALICE detector. The longitudinal asymmetry arises because of an unequal number of participating nucleons from the two colliding nuclei, and is estimated for each event by measuring the energy in the forward neutron-Zero-Degree-Calorimeters (ZNs). The effect of the longitudinal asymmetry is measured on the pseudorapidity distributions of charged particles in the regions |η|<0.9, 2.8 < η < 5.1 and -3.7 < η < 1.7 by taking the ratio of the pseudorapidity distributions from events corresponding to different regions of asymmetry. The coefficients of a polynomial fit to the ratio characterise the effect of the asymmetry. A Monte Carlo simulation using a Glauber model for the colliding nuclei is tuned to reproduce the spectrum in the ZNs and provides a relation between the measurable longitudinal asymmetry and the shift in the rapidity (y0) of the participant zone formed by the unequal number of participating nucleons. The dependence of the coefficient of the linear term in the polynomial expansion, c1, on the mean value of y0 is investigated. ; A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.