Póster ; Organic agriculture is a holistic production management system which promotes and enhances agroecosystem health, including biodiversity, biological cycles, and soil biological activity. It emphasizes the use of management practices in preference to the use of off-farm inputs. This is accomplished by using, where possible, cultural, biological and mechanical methods, as opposed to using synthetic materials (Codex Alimentarius, 1999). The Regulations (CE) 834/2007 and 889/2008 set down the rules for production, labelling and control of organic products in the European Union.
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis. ; This work was partially funded by the Instituto de Salud Carlos III (Madrid, Spain) through the project PI15/01934, PI18/01022, PI21/01361) to J.M.F.-R. and the project PI20/01090 (co-funded by the European Regional Development Fund. "A way to make Europe") to J.M.-P., the grants SAF2015-65878-R from the Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain and also by the Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013-602891), the Catalan Government (AGAUR, #SGR2017-669, #2017 SGR- 734, ICREA Academia Award 2015 to R.M. and ICREA Academia Award 2022 to J.M.F.R.), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020), the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT), and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020). CIBERobn is also co-funded by the European Regional Development Fund. We also acknowledge the funding from the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), and the Generalitat of Catalonia (Agency for Management of University and Research grants (2017SGR696) and Department of Health (SLT002/16/00250)) to R.M M.A.-R. is funded by the Instituto de Salud Carlos III, Río Hortega (CM19/00190). J.M.-P. is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP18/00009), co-funded by the European Social Fund "Investing in your future." A.C.-N. is funded by the Instituto de Salud Carlos III, Sara Borrell. MMG was funded by the Spanish Ministry of Science, Innovation and Universities RTI2018-094248-B-I00.
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis. ; This work was partially funded by the Instituto de Salud Carlos III (Madrid, Spain) through the project PI15/01934, PI18/01022, PI21/01361) to J.M.F.-R. and the project PI20/01090 (co-funded by the European Regional Development Fund . "A way to make Europe") to J.M.-P., the grants SAF2015-65878-R from the Ministry of Economy and Competitiveness , Prometeo/2018/A/133 from Generalitat Valenciana, Spain and also by the Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013- 602891 ), the Catalan Government (AGAUR, #SGR2017-669 , #2017 SGR- 734, ICREA Academia Award 2015 to R.M. and ICREA Academia Award 2022 to J.M.F.R.), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020 ), the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT), and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020). CIBERobn is also co-funded by the European Regional Development Fund. We also acknowledge the funding from the Spanish Ministry of Science, Innovation and Universities ( RTI2018-099200-B-I00 ), and the Generalitat of Catalonia (Agency for Management of University and Research grants ( 2017SGR696 ) and Department of Health (SLT002/16/00250)) to R.M M.A.-R. is funded by the Instituto de Salud Carlos III , Río Hortega ( CM19/00190 ). J.M.-P. is funded by the Miguel Servet Program from the Instituto de Salud Carlos III ( ISCIII CP18/00009 ), co-funded by the European Social Fund "Investing in your future." A.C.-N. is funded by the Instituto de Salud Carlos III , Sara Borrell. MMG was funded by the Spanish Ministry of Science, Innovation and Universities RTI2018-094248-B-I00.
Gut: first published. ; [Background]: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. ; [Methods]: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. ; [Results]: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. ; [Conclusion]: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts. ; This work was partially supported by research grants FIS (PI15/01934 and PI18/01022) from the Instituto de Salud Carlos III from Spain, SAF2015-65878-R and #AEI-SAF2017-84060-R-FEDER from Ministry of Economy and Competitiveness, Prometeo/2018/A/133 from Generalitat Valenciana, Spain; and also by Fondo Europeo de Desarrollo Regional (FEDER) funds, European Commission (FP7, NeuroPain #2013-602891), the Catalan Government (AGAUR, #SGR2017-669, ICREA Academia Award 2015), the Spanish Instituto de Salud Carlos III (RTA, #RD16/0017/0020), the Spanish Ministry of Science, Innovation and Universities (RTI2018-099200-B-I00), the Catalan Goverment (Agency for Management of University and Research Grants [2017SGR696] and Department of Health [STL002/16/00250]; the European Regional Development Fund (project No. 01.2.2-LMT-K-718-02-0014) under grant agreement with the Research Council of Lithuania (LMTLT); and the Project ThinkGut (EFA345/19) 65% co-financed by the European Regional Development Fund (ERDF) through the Interreg V-A SpainFrance-Andorra programme (POCTEFA 2014-2020). MA-R is funded by a predoctoral Río Hortega contract from the Instituto de Salud Carlos III (ISCIII, CM19/00190), co-funded by the European Social Fund "Investing in your future". OC-R is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP20/00165), co-funded by the Europeran Social Fund "Investing in your future". JM-P is funded by the Miguel Servet Program from the Instituto de Salud Carlos III (ISCIII CP18/00009), co-funded by the European Social Fund "Investing in your future". JS is funded by a predoctoral PERIS contract (SLT002/16/00250) from the Catalan Government. MJ is a professor under the "Serra Hunter" programme (Generalitat de Catalunya). ; Peer reviewed