Australian Centre for International Agricultural Research ; Irish Aid ; Ministry of Foreign Affairs, the Netherlands ; Ministry of Foreign Affairs and Trade, New Zealand ; Swiss Agency for Development and Cooperation ; Department for International Development, United Kingdom ; United States Agency for International Development ; European Union ; Internal Review
Understanding major climate risks, adaptation strategies, and factors influencing the choice of those strategies is crucial to reduce farmers' vulnerability. Employing comprehensive data from 2822 farm households in Ethiopia and Kenya (East Africa; EA) and 1902 farm households in Bangladesh, India, and Nepal (South Asia; SA), this study investigates the main climate risks that farmers faced and the adaptation strategies they used. Among others, excessive rainfall and heightened crop pest/disease incidence are commonly observed climate-induced risks in all study areas, while cyclones and salinity are unique to Bangladesh. Drought is prevalent in Ethiopia, India, Kenya, and Nepal. Farmers in those countries responded with strategies that include change in farming practices, sustainable land management, reduce consumption, sell assets, use savings and borrowings, seek alternative employment and assistance from government or NGO. In general, farmers faced several multiple climate risks simultaneously and they responded with multiple adaptation strategies. Therefore, this study used a multivariate probit (MVP) approach to examine the factors influencing the adoption of adaptation strategies. Unlike other studies, we also tested and corrected for possible endogeneity in model estimation. All the countries mentioned have low adaptive capacity to address climate change, which is further weakened by inadequate governance and inefficient institutions. We observed significant differences in the choice of adaptation strategies between male-headed households (MHHs) and female-headed households (FHHs), as well as across countries. Generally, MHHs are more likely to seek additional employment and change agricultural practices, while FHHs and households headed by older persons tend to reduce consumption and rely on savings and borrowings. Institutional support for adaptation is much less in EA compared to SA. Training on alternative farming practices, enhancing non-farm employment options, better institutional support, and ...
Actions on climate change (SDG 13), including in the food system, are crucial. SDG 13 needs to align with the Paris Agreement, given that UNFCCC negotiations set the framework for climate change actions. Food system actions can have synergies and trade-offs, as illustrated by the case for nitrogen fertiliser. SDG 13 actions that reduce emissions can have positive impacts on other SDGs (e.g. 3, 6, 12, 14, 15); but such actions should not undermine the adaptation goals of SDG 13 and SDGs 1, 2, 5 and 10. Balancing trade-offs is thus crucial, with SDG 12 central: responsible consumption and production. Transformative actions in food systems are needed to achieve SDG 13 (and other SDGs), involving technical, policy, capacity enhancement and finance elements. But transformative actions come with risks, for farmers, investors, development agencies and politicians. Likely short and long term impacts need to be understood.
In: Bruce M , C , James , H , Janie , R , Clare M , S , Stephen , T & Eva , L W 2018 , ' Urgent action to combat climate change and its impacts (SDG 13) : transforming agriculture and food systems ' , Current Opinion in Environmental Sustainability , vol. 34 , pp. 13-20 . https://doi.org/10.1016/j.cosust.2018.06.005
Actions on climate change (SDG 13), including in the food system, are crucial. SDG 13 needs to align with the Paris Agreement, given that UNFCCC negotiations set the framework for climate change actions. Food system actions can have synergies and trade-offs, as illustrated by the case for nitrogen fertiliser. SDG 13 actions that reduce emissions can have positive impacts on other SDGs (e.g. 3, 6, 12, 14, 15); but such actions should not undermine the adaptation goals of SDG 13 and SDGs 1, 2, 5 and 10. Balancing trade-offs is thus crucial, with SDG 12 central: responsible consumption and production. Transformative actions in food systems are needed to achieve SDG 13 (and other SDGs), involving technical, policy, capacity enhancement and finance elements. But transformative actions come with risks, for farmers, investors, development agencies and politicians. Likely short and long term impacts need to be understood.
AbstractFertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers' use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers' use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems.
AbstractRural households in South Asia's coastal deltas face numerous livelihood challenges, including risks posed by climatic variability and extreme weather events. This study examines major climate risks, farmers' adaptation strategies, and the factors affecting the choice of those strategies using data collected from 630 households in southwestern coastal Bangladesh. Farmers identified cyclones, excessive rain and flooding, and salinity as direct climate risks. Increased crop diseases/pests and livestock diseases were perceived as indirect risks resulting from climatic variability. Farmers used multiple adaptation strategies against those risks such as modifications in farm management, use of savings and borrowing funds from family and neighbors, and periodically reducing household food consumption. Off-farm employment and seeking assistance from governmental as well as non-governmental organizations (NGOs) were also common adaptation strategies. The results show that male-headed households are more likely to change farming practices and reduce consumption compared with female-headed households that conversely tended to take assistance from NGOs as an adaptation strategy. Ownership of land and livestock, as well as farmers' prior exposure to climate change and educational training, also had a significant effect on the choice of adaptation strategy. Therefore, development interventions and policies that aimed at improving resource endowment and training to farmers on climatic risks and their adaptation strategies can help minimize the impact of climatic risks.
Rural households in South Asia's coastal deltas face numerous livelihood challenges, including risks posed by climatic variability and extreme weather events. This study examines major climate risks, farmers' adaptation strategies, and the factors affecting the choice of those strategies using data collected from 630 households in southwestern coastal Bangladesh. Farmers identified cyclones, excessive rain and flooding, and salinity as direct climate risks. Increased crop diseases/pests and livestock diseases were perceived as indirect risks resulting from climatic variability. Farmers used multiple adaptation strategies against those risks such as modifications in farm management, use of savings and borrowing funds from family and neighbors, and periodically reducing household food consumption. Off-farm employment and seeking assistance from governmental as well as non-governmental organizations (NGOs) were also common adaptation strategies. The results show that male-headed households are more likely to change farming practices and reduce consumption compared with female-headed households that conversely tended to take assistance from NGOs as an adaptation strategy. Ownership of land and livestock, as well as farmers' prior exposure to climate change and educational training, also had a significant effect on the choice of adaptation strategy. Therefore, development interventions and policies that aimed at improving resource endowment and training to farmers on climatic risks and their adaptation strategies can help minimize the impact of climatic risks.
Rural households in South Asia's coastal deltas face numerous livelihood challenges, including risks posed by climatic variability and extreme weather events. This study examines major climate risks, farmers' adaptation strategies, and the factors affecting the choice of those strategies using data collected from 630 households in southwestern coastal Bangladesh. Farmers identified cyclones, excessive rain and flooding, and salinity as direct climate risks. Increased crop diseases/pests and livestock diseases were perceived as indirect risks resulting from climatic variability. Farmers used multiple adaptation strategies against those risks such as modifications in farm management, use of savings and borrowing funds from family and neighbors, and periodically reducing household food consumption. Off-farm employment and seeking assistance from governmental as well as non-governmental organizations (NGOs) were also common adaptation strategies. The results show that male-headed households are more likely to change farming practices and reduce consumption compared with female-headed households that conversely tended to take assistance from NGOs as an adaptation strategy. Ownership of land and livestock, as well as farmers' prior exposure to climate change and educational training, also had a significant effect on the choice of adaptation strategy. Therefore, development interventions and policies that aimed at improving resource endowment and training to farmers on climatic risks and their adaptation strategies can help minimize the impact of climatic risks.
This study explores whether conservation agriculture-based wheat production system (CAW) can better cope with climatic extremes than the conventional tillage-based wheat production system (CTW). To assess this, we used data collected from 208 wheat farmers in Haryana, India in 2013–14 (a period with normal rainfall i.e., normal year) and 2014–15 (a period with untimely excess rainfall i.e., bad year) wheat seasons. Our analysis shows that whilst average wheat yield was greater under CAW than CTW during both bad and normal years, the difference was two-fold greater during the bad year (16% vs. 8%). This provides new evidence that CAW can cope better with the climatic extremes, in this case untimely excess rainfall, compared to CTW. Absolute yield of the CAW and CTW was 10% and 16% lower in the bad year compared to the normal year, respectively. Extreme climate events, such as excess rainfall during wheat season, can occur once in every four years in Haryana and result in a loss of income to both farmers, through a loss of yield, and the government, through compensatory payments to farmers. If, as targeted by the Haryana government in 2011, one million ha of wheat was brought under CAW, the state would have produced an additional 0.66 million Mg of wheat in 2014–15, equivalent to US$ 153 million. This is an important finding given the increased vulnerability of wheat production to climatic variability in this region.
Climate variability is a major source of risk to smallholder farmers and pastoralists, particularly in dryland regions. A growing body of evidence links climate-related risk to the extent and the persistence of rural poverty in these environments. Stochastic shocks erode smallholder farmers' long-term livelihood potential through loss of productive assets. The resulting uncertainty impedes progress out of poverty by acting as a disincentive to investment in agriculture – by farmers, rural financial services, value chain institutions and governments. We assess evidence published in the last ten years that a set of production technologies and institutional options for managing risk can stabilize production and incomes, protect assets in the face of shocks, enhance uptake of improved technologies and practices, improve farmer welfare, and contribute to poverty reduction in risk-prone smallholder agricultural systems. Production technologies and practices such as stress-adapted crop germplasm, conservation agriculture, and diversified production systems stabilize agricultural production and incomes and, hence, reduce the adverse impacts of climate-related risk under some circumstances. Institutional interventions such as index-based insurance and social protection through adaptive safety nets play a complementary role in enabling farmers to manage risk, overcome risk-related barriers to adoption of improved technologies and practices, and protect their assets against the impacts of extreme climatic events. While some research documents improvements in household welfare indicators, there is limited evidence that the risk-reduction benefits of the interventions reviewed have enabled significant numbers of very poor farmers to escape poverty. We discuss the roles that climate-risk management interventions can play in efforts to reduce rural poverty, and the need for further research on identifying and targeting environments and farming populations where improved climate risk management could accelerate efforts to reduce rural poverty.
Developing countries are at considerable risk from climate variability and climate change, both of which threaten poverty reduction and development efforts. The Climate Services for Resilient Development (CSRD) partnership is led by the United States Government has developed a consortium of global leaders in science, technology and development finance to assist at-risk nations to adapt to these problems. CSRD is aligned with the the Global Framework for Climate Services and works in Bangladesh, Ethiopia, and Colombia to creating and provide timely and useful climate data, information, tools, and services. Within South Asia, efforts to develop agricultural climate services under CSRD are led by the International Maize and Wheat Improvement Center (CIMMYT). CSRD in turn works to support Investment Options Paper (IOP) for Climate Services for Resilient Development in Bangladesh, compiled by the Asian Development Bank (ADB) in 2016. CSRD's core objectives are to prepare farmers, extension services, and agricultural policy makers with actionable climate information and crop management advisories to reduce agricultural production risks and to increase the resilience of smallholder farming communities. This report summarizes CSRD activities, achievements, and challenges during the project's inception phase (from the end of November 2017 through April of 2017).