In this article, we analyze how successful the implementation of Integrated Water Resource Management (IWRM) in the Ebro river catchment (in Spain) has been. Our main aim is to show some gaps between theory and practice. This implies analyzing the political dimensions of governance and their change and reflecting on the interface between governance and technical knowledge about water. We highlight problems, such as the lack of institutional coordination, blind spots in technical information and path dependences. Actual water management has led to plans for further irrigation even though water availability is, and is expected to continue, shrinking due to climate change and other local factors. To overcome these mismatches, we propose further synchronization, innovative ways of public participation and knowledge sharing between institutions and researchers. As a showcase, we portray a practical real example of a desirable institutional arrangement in one sub-catchment.
Multisectoral models usually have a single representative household. However, more diversity of household types is needed to analyse the effects of multiple phenomena (i.e. ageing, gender inequality, distributional income impact, etc.). Household consumption surveys' microdata is a rich data source for these types of analysis. However, feeding multisectoral models with this type of information is not simple and recent studies show how even slightly inaccurate procedures might result in significantly biased results. This paper presents the full procedure for feeding household consumption microdata into macroeconomic models and for the first time provides in a systematic way an estimation of the bridge matrices needed to link European Union Household Budget Surveys' microdata with the most popular multi-regional input–output frameworks (e.g. Eurostat, WIOD, EORA, OECD).
Deltas are home to a large and growing proportion of the world's population, often living in conditions of extreme poverty. Deltaic ecosystems are ecologically significant as they support high biodiversity and a variety of fisheries, however these coastal environments are extremely vulnerable to climate change. The Ganges-Brahmaputra-Meghna (Bangladesh/India), the Mahanadi (India), and the Volta (Ghana) are among the most important and populous delta regions in the world and they are all considered at risk of food insecurity and climate change. The fisheries sector is vital for populations that live in the three deltas, as a source of animal protein (in Bangladesh and Ghana around 50–60% of animal protein is supplied by fish while in India this is about 12%) through subsistence fishing, as a source of employment and for the wider economy. The aquaculture sector shows a rapid growth in Bangladesh and India while in Ghana this is just starting to expand. The main exported species differ across countries with Ghana and India dominated by marine fish species, whereas Bangladesh exports shrimps and prawns. Fisheries play a more important part in the economy of Bangladesh and Ghana than for India, both men and women work in fisheries, with a higher proportion of women in the Volta then in the Asian deltas. Economic and integrated modelling using future scenarios suggest that changes in temperature and primary production could reduce fish productivity and fisheries income especially in the Volta and Bangladesh deltas, however these losses could be mitigated by reducing overfishing and improving management. The analysis provided in this paper highlights the importance of applying plans for fisheries management at regional level. Minimizing the impacts of climate change while increasing marine ecosystems resilience must be a priority for scientists and governments before these have dramatic impacts on millions of people's lives.
To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP–SSP–SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges. ; Deltas, Vulnerability & Climate Change: Migration & Adaptation (DECCMA) project (IDRC 107642) under the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) programme with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC 1076422), Canada.