The Burst Observer and Optical Transient Exploring System (BOOTES), started in 1998 as a Spanish-Czech collaboration project, devoted to a study of optical emissions from gamma ray bursts (GRBs) that occur in the Universe. The first two BOOTES stations were located in Spain, and included medium size robotic telescopes with CCD cameras at the Cassegrain focus as well as all-sky cameras, with the two stations located 240 km apart. The first observing station (BOOTES-1) is located at ESAt (INTA-CEDEA) in Mazag´on (Huelva) and the first light was obtained in July 1998. The second observing station (BOOTES-2) is located at La Mayora (CSIC) in M´alaga and has been operating fully since July 2001. In 2009 BOOTES expanded abroad, with the third station (BOOTES-3) being installed in Blenheim (South Island, New Zealand) as result of a collaboration project with several institutions from the southern hemisphere. The fourth station (BOOTES-4) is on its way, to be deployed in 2011.
Context. Accretion of gas from the intergalactic medium is required to fuel star formation in galaxies. We have recently suggested that this process can be studied using host galaxies of gamma-ray bursts (GRBs). Aims. Our aim is to test this possibility by studying in detail the properties of gas in the closest galaxy hosting a GRB (980425). Methods. We obtained the first ever far-infrared (FIR) line observations of a GRB host, namely Herschel/PACS resolved [C ii] 158 μm and [O i] 63 μm spectroscopy, and an APEX/SHeFI CO(2-1) line detection and ALMA CO(1-0) observations of the GRB 980425 host. Results. The GRB 980425 host has elevated [C ii]/FIR and [O i]/FIR ratios and higher values of star formation rates (SFR) derived from line ([C ii], [O i], Hα) than from continuum (UV, IR, radio) indicators. [C ii] emission exhibits a normal morphology, peaking at the galaxy centre, whereas [O i] is concentrated close to the GRB position and the nearby Wolf-Rayet region. The high [O i] flux indicates that there is high radiation field and high gas density at these positions, as derived from modelling of photo-dissociation regions. The [C ii]/CO luminosity ratio of the GRB 980425 host is close to the highest values found for local star-forming galaxies. Indeed, its CO-derived molecular gas mass is low given its SFR and metallicity, but the [C ii]-derived molecular gas mass is close to the expected value. Conclusions. The [O i] and H i concentrations and the high radiation field and density close to the GRB position are consistent with the hypothesis of a very recent (at most a few tens of Myr ago) inflow of atomic gas triggering star formation. In this scenario dust has not had time to build up (explaining high line-to-continuum ratios). Such a recent enhancement of star formation activity would indeed manifest itself in high SFR/SFR ratios because the line indicators are sensitive only to recent (∼ 10 Myr) activity, whereas the continuum indicators measure the SFR averaged over much longer periods (~100 Myr). Within a sample of 32 other GRB hosts, 20 exhibit SFR/SFR> 1 with a mean ratio of 1.74 ± 0.32. This is consistent with a very recent enhancement of star formation that is common among GRB hosts, so galaxies that have recently experienced inflow of gas may preferentially host stars exploding as GRBs. Therefore GRBs may be used to select a unique sample of galaxies that is suitable for the investigation of recent gas accretion. ; J.L.W. is supported by a European Union COFUND/Durham Junior Research Fellowship under EU grant agreement number 267209, and acknowledges additional support from STFC (ST/L00075X/1). A.K. acknowledges support from the Foundation for Polish Science (FNP) and the Polish National Science Center grant 2013/11/N/ST9/00400. A.J.C.T. acknowledges support from the Spanish Ministry Project AYA2015-71718-R. D.X. acknowledges the support by the One-Hundred-Talent Program of the Chinese Academy of Sciences, and by the Strategic Priority Research Program >Multi-wavelength Gravitational Wave Universe> of the Chinese Academy of Sciences (No. XDB23000000). ; Peer Reviewed
We report on multicolor photometry of long GRB080603B afterglow from BOOTES-1B and BOOTES-2. The optical afterglow has already been reported to present a break in the optical lightcurve at 0.12 ± 0.2 days after the trigger. We construct the lightcurve and the spectral energy distribution and discuss the nature of the afterglow.
Pi of the Sky is a system of robotic telescopes designed for observations of short timescale astrophysical phenomena, e.g. prompt optical GRB emissions. The apparatus is designed to monitor a large fraction of the sky with 12–13 m range and time resolution of the order of 1–10 seconds. In October 2010 the first unit of the new Pi of the Sky detector system was successfully installed in the INTA El Arenosillo Test Centre in Spain. We also moved our prototype detector from Las Campanas Observatory to San Pedro de Atacama Observatory in March 2011. The status and performance of both detectors is presented.
We present the extensive follow-up campaign on the afterglow of GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 s after the burst and extending up to 74 d later. We performed for the first time a GRB afterglow observation with the ALMA observatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use the optical and near-infrared spectroscopy to provide further information about the progenitor's environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host-galaxy environment with low ionization, column density, and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broad-band afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best-fitting parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by these models, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multiwavelength broad-band afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows. ; RSR is grateful to SEPE for financial support while finishing this work and his PhD thesis. RSR, SRO, AJCT, YDH, SJ, and JCT acknowledge the financial support of the Spanish Government projects AYA 2009- 14000-C03-01 and AYA 2012-39727-C03-01. Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project No. CE110001020. AdUP and CT acknowledge support from Ramon´ y Cajal fellowships and from the Spanish research project AYA 2014-58381. JJ acknowledges financial contribution from the grant PRIN MIUR 2012 201278X4FL 002 'The Intergalactic Medium as a probe of the growth of cosmic structures'. DAK acknowledges the financial support by MPE Garching and TLS Tautenburg. Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1). PS and TK acknowledges support through the Sofja Kovalevskaja Award to P. Schady from the Alexander von Humboldt Foundation of Germany. AU is grateful for travel funding support through the Max-Planck Inst. for Extraterrestrial Physics. SK and ANG acknowledge support by DFG grant Kl 766/16-1. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. Facilities: This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX) under program 087.F- 9301(A). This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00001.E. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This publication is based on data acquired with the VLT/Xshooter under program 087.A-0055(C), as well as with VLT/FORS2 under program 091.A-0703(A). ; Peer-reviewed ; Publisher Version