The mechanisms by which an organ regulates its growth are not yet fully understood, especially when the cells are closely packed as in epithelial tissues. We explain growth arrest as a collective dynamical transition in coupled oscillators on disordered lattices. As the cellular morphologies become homogeneous over the course of development, the signals induced by cell-cell contact increase beyond a critical value that triggers coordinated cessation of the cell-cycle oscillators driving cell division. Thus, control of cell proliferation is causally related to the geometry of cellular packing. ; S.N.M. has been supported by the Center of Excellence in Complex Systems and Data Science, funded by the Department of Atomic Energy, Government of India. The simulations required for this work were supported by IMSc High Performance Computing facility (Nandadevi).
This article, published in Genome Research, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported).-- et al. ; Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS. ; The project was supported by Fritz-Thyssen-Stiftung, Cologne, Germany (10.09.2.146; 10.12.2.183), KKF-TUM (8766156), DAAD (0811963), and COST ("HOX and TALE homeoproteins in Development and Disease"). B.S. was partially supported by DFG grants (WI 1820/4-1; WI 1820/5-1) and a TUM-Excellence stipend. The KORA study was financed by the Helmholtz Zentrum München, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. J.L.G.-S. and F.C. acknowledge funding of the Spanish and the Andalusian Governments and the Feder program for grants (BFU2010-14839, BFU2009-07044, CSD2007-00008, and Proyectos de Excelencia CVI-3488 and CVI 2658). This work was funded in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD), to the German Mouse Clinic (Infrafrontier: 01KX1012), to the German Center for Neurodegenerative Diseases (DZNE), Germany; by the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Research in an Ageing Society (HA-215); and the Munich Cluster for Systems Neurology (EXC 1010 SyNergy) and its Collaborative Research Center (CRC) 870/2 "Assembly and Function of Neuronal Circuits." ; Peer Reviewed
The great capability of insects to adapt to new environments promoted their extraordinary diversification, resulting in the group of Metazoa with the largest number of species distributed worldwide. To understand this enormous diversity, it is essential to investigate lineages that would allow the reconstruction of the early events in the evolution of insects. However, research on insect ecology, physiology, development and evolution has mostly focused on few well-established model species. The key phylogenetic position of mayflies within Paleoptera as the sister group of the rest of winged insects and life history traits of mayflies make them an essential order to understand insect evolution. Here, we describe the establishment of a continuous culture system of the mayfly Cloeon dipterum and a series of experimental protocols and omics resources that allow the study of its development and its great regenerative capability. Thus, the establishment of Cloeon as an experimental platform paves the way to understand genomic and morphogenetic events that occurred at the origin of winged insects. ; This project has been funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement 657732 to IA, Grant BFU2015-66040-P to FC and institutional Grant MDM-2016-0687 (MINECO, Spain). ; Peer reviewed
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects. ; This project was mainly funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement 657732 to I.A., Grant BFU2015-66040-P to F.Ca., institutional Grant MDM-2016-0687 (MINECO, Spain). Additional funding was provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (ERC-StG-LS2-637591 to M.I.), the Spanish Ministerio de Ciencia (BFU2017-89201-P to M.I., RYC-2016-20089 and PGC2018-099392-A-I00 to I.M.)
Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cisregulatory activity, including enhancer, insulators as well as other not yet discovered functions. ; This work was funded by the Spanish and Andalusian Governments, grants BFU2010-14839, BFU2009-07044, CSD2007-00008, Proyecto de Excelencia CVI-3488 and CVI-2658.
7 páginas, 6 figuras, 1 tabla.-- et al. ; PMCID: PMC3196567 ; Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 11 11 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals. These sites preferentially flank transcription factor–encoding genes, often associated with human diseases, and function as enhancer blockers in vivo, suggesting that they act as evolutionarily invariant gene boundaries. We then applied this concept to predict and functionally demonstrate that the polymorphic variants associated with multiple sclerosis located within the EVI5 gene impinge on the adjacent gene GFI1. ; This research was supported by the following grants: BFU2007-60042/BMC, BFU2010-14839, Petri PET2007_0158, CONSOLIDER CSD2007-00008 (Spanish Ministerio de Ciencia e Innovación (MICINN)) and Proyecto de Excelencia CVI-3488 (Junta de Andalucía) to J.L.G.-S.; BFU2009-07044 (MICINN) and Proyecto de Excelencia CVI 2658 (Junta de Andalucía) to F.C.; FIS PI081636 (ISCIII) to F.M.; PN-SAF2009-11491 (MICINN) and Proyecto de Excelencia P07-CVI-02551 (Junta de Andalucía) to A.A.; BFU2008-00838, CONSOLIDER CSD2007-00008 (MICINN), Regional Government of Madrid (CAM S-SAL-0190-2006) and the Pro-CNIC Foundation to M.M.; BFU2006-12185 and BIO2009-12697 (MICINN) to L.M.; Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN209403, IN214407 and IN203811) and Consejo Nacional de Ciencia y Tecnología, México (CONACyT: 42653-Q, 58767 and 128464) to F.R.-T.; Intramural Research Program of the US NCBI (NIH) to I.O. and BIO2006-03380, CONSOLIDER CSD2007-00050 (MICINN) and RETICS RD07/0067/0012 (Spanish MICINN) to R.G. L.M. thanks A. Fernández for technical assistance and L. Barrios for statistical analysis. F.R.-T. thanks G.G. Avendaño for technical assistance. ; Peer reviewed
The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects. ; This project was mainly funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement 657732 to I.A., Grant BFU2015-66040-P to F.Ca., institutional Grant MDM-2016-0687 (MINECO, Spain). Additional funding was provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (ERC-StG-LS2-637591 to M.I.), the Spanish Ministerio de Ciencia (BFU2017-89201-P to M.I., RYC-2016-20089 and PGC2018-099392-A-I00 to I.M.). ; Peer reviewed
Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS. ; The project was supported by Fritz-Thyssen-Stiftung, Cologne, Germany (10.09.2.146; 10.12.2.183), KKF-TUM (8766156), DAAD (0811963), and COST (''HOX and TALE homeoproteins in Development and Disease''). B.S. was partially supported by DFG grants (WI 1820/4-1; WI 1820/5-1) and a TUM-Excellence stipend. The KORA study was financed by the Helmholtz ZentrumMunchen, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universita¨t, as part of LMUinnovativ. J.L.G.-S. and F.C. acknowledge funding of the Spanish and the Andalusian Governments and the Feder program for grants (BFU2010-14839, BFU2009-07044, CSD2007-00008, and Proyectos de Excelencia CVI-3488 and CVI 2658). This work was funded in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD), to ...