This mini-review considers three different approaches to the therapy and prevention of Alzheimer's disease (AD): replacement therapy, disease modification, and multi-level interventions. Each of these research frameworks has direct implications at the clinical level, leading to an emphasis on different time points of the AD continuum. While all perspectives continue to play an important role in current efforts to reach the ambitious target of an effective therapy or prevention of AD by 2025, it is clear that novel paradigms are needed, including new models of clinical trial design. This goal can only be accomplished by a concerted effort of academia, governmental agencies, and industry.
The early identification of fragile populations in the Covid-19 era would help governments to allocate resources and plan strategies to contain consequences of the pandemic. Beyond frailty, social vulnerability to environmental stressors, such as the social distancing enforced to reduce the SARS-CoV2 contagion, can modify long-term disease risk and induce health status changes in the general population. We assessed frailty and social vulnerability indices in 1,258 Italian residents during the first lockdown phase via an on-line survey. We compared indices taking into account age categories and gender. While frailty showed a linear increase with age and was greater in females than in males, social vulnerability was higher in young adults and elders compared to middle aged and older adults, and in males than females. Both frailty and social vulnerability contributed in explaining the individual perception of the impact of Covid-19 emergency on health, which was further influenced by proactive attitudes/behaviors and social isolation. Social isolation and loneliness following the Covid-19 outbreak may exert dramatic psychosocial effects in the general population. The early detection of vulnerable categories, at risk to become ill and develop long-lasting health status changes, would help to prevent consequences on general well-being by allocating resources to targeted interventions managing psychosocial distress and increasing young adults and elderly resilience toward the post-Covid-19 crisis.
In: Gao , Y , Wang , T , Yu , X , Ferrari , R , Hernandez , D G , Nalls , M A , Rohrer , J D , Ramasamy , A , Kwok , J B J , Dobson-Stone , C , Brooks , W S , Schofield , P R , Halliday , G M , Hodges , J R , Piguet , O , Bartley , L , Thompson , E , Haan , E , Hernández , I , Ruiz , A , Boada , M , Borroni , B , Padovani , A , Cruchaga , C , Cairns , N J , Benussi , L , Binetti , G , Ghidoni , R , Forloni , G , Albani , D , Galimberti , D , Fenoglio , C , Serpente , M , Scarpini , E , Clarimón , J , Lleó , A , Blesa , R , Waldö , M L , Nilsson , K , Nilsson , C , Mackenzie , I R A , Hsiung , G Y R , Mann , D M A , Grafman , J , Morris , C M , Attems , J , Griffiths , T D , McKeith , I G , Thomas , A J , Pietrini , P , Huey , E D , Wassermann , E M , Baborie , A , Jaros , E , Tierney , M C , Pastor , P , Razquin , C , Ortega-Cubero , S , Alonso , E , Perneczky , R , Diehl-Schmid , J , Alexopoulos , P , Kurz , A , Rainero , I , Rubino , E , Pinessi , L , Rogaeva , E , George-Hyslop , P S , Rossi , G , Tagliavini , F , Giaccone , G , Rowe , J B , Schlachetzki , J C M , Uphill , J , Collinge , J , Mead , S , Danek , A , Van Deerlin , V M , Grossman , M , Trojanowski , J Q , van der Zee , J , Cruts , M , Van Broeckhoven , C , Cappa , S F , Leber , I , Hannequin , D , Golfier , V , Vercelletto , M , Brice , A , Nacmias , B , Sorbi , S , Bagnoli , S , Piaceri , I , Nielsen , J E , Hjermind , L E , Riemenschneider , M , Mayhaus , M , Ibach , B , Gasparoni , G , Pichler , S , Gu , W , Rossor , M N , Fox , N C , Warren , J D , Spillantini , M G , Morris , H R , Rizzu , P , Heutink , P , Snowden , J S , Rollinson , S , Richardson , A , Gerhard , A , Bruni , A C , Maletta , R , Frangipane , F , Cupidi , C , Bernardi , L , Anfossi , M , Gallo , M , Conidi , M E , Smirne , N , Rademakers , R , Baker , M , Dickson , D W , Graff-Radford , N R , Petersen , R C , Knopman , D , Josephs , K A , Boeve , B F , Parisi , J E , Seeley , W W , Miller , B L , Karydas , A M , Rosen , H , van Swieten , J C , Dopper , E G P , Seelaar , H , Pijnenburg , Y A L , Scheltens , P , Logroscino , G , Capozzo , R , Novelli , V , Puca , A A , Franceschi , M , Postiglione , A , Milan , G , Sorrentino , P , Kristiansen , M , Chiang , H H , Graff , C , Pasquier , F , Rollin , A , Deramecourt , V , Lebouvier , T , Kapogiannis , D , Ferrucci , L , Pickering-Brown , S , Singleton , A B , Hardy , J , Momeni , P , Zhao , H , Zeng , P & International FTD-Genomics Consortium (IFGC) 2020 , ' Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis ' , Scientific Reports , vol. 10 , no. 1 , 12184 . https://doi.org/10.1038/s41598-020-68848-9
We employed Mendelian randomization (MR) to evaluate the causal relationship between leukocyte telomere length (LTL) and amyotrophic lateral sclerosis (ALS) with summary statistics from genome-wide association studies (n = ~ 38,000 for LTL and ~ 81,000 for ALS in the European population; n = ~ 23,000 for LTL and ~ 4,100 for ALS in the Asian population). We further evaluated mediation roles of lipids in the pathway from LTL to ALS. The odds ratio per standard deviation decrease of LTL on ALS was 1.10 (95% CI 0.93–1.31, p = 0.274) in the European population and 0.75 (95% CI 0.53–1.07, p = 0.116) in the Asian population. This null association was also detected between LTL and frontotemporal dementia in the European population. However, we found that an indirect effect of LTL on ALS might be mediated by low density lipoprotein (LDL) or total cholesterol (TC) in the European population. These results were robust against extensive sensitivity analyses. Overall, our MR study did not support the direct causal association between LTL and the ALS risk in neither population, but provided suggestive evidence for the mediation role of LDL or TC on the influence of LTL and ALS in the European population.