Safety of Varenicline for Smoking Cessation in Psychiatric and Addicts Patients
In: Substance use & misuse: an international interdisciplinary forum, Band 51, Heft 5, S. 649-657
ISSN: 1532-2491
3 Ergebnisse
Sortierung:
In: Substance use & misuse: an international interdisciplinary forum, Band 51, Heft 5, S. 649-657
ISSN: 1532-2491
Producción Científica ; Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products for human use that comprises somatic cell therapy medicinal products, tissue engineered products, gene therapy medicinal products, and the so-called combined ATMPs that consist of one of the previous three categories combined with one or more medical devices. During the last few years, the development of ATMPs for the treatment of eye diseases has become a fast-growing field as it offers the potential to find novel therapeutic approaches for treating pathologies that today have no cure or are just subjected to symptomatic treatments. Therefore, it is important for all professionals working in this field to be familiar with the regulatory principles associated with these types of innovative products. In this review, we outline the legal framework that regulates the development of ATMPs in the European Union and other international jurisdictions, and the criteria that each type of ATMP must meet to be classified as such. To illustrate each legal definition, ATMPs that have already completed the research and development stages and that are currently used for the treatment of eye diseases are presented as examples. ; Department of Education, Castilla y León Regional Government (Grant VA168P18 FEDER, EU) Spain; Ministry of Science and Innovation (Grant PID2019-105525RB-100, MICINN/FEDER, EU), Spain; Institute of Health Carlos III, CIBER-BBN (CB06/01/003 MICINN/FEDER, EU), Spain; Regional Center for Regenerative Medicine and Cell Therapy of Castilla y León, Spain.
BASE
Limbal epithelial stem cells (LESCs) are responsible for the renewal of corneal epithelium. Cultivated limbal epithelial transplantation is the current treatment of choice for restoring the loss or dysfunction of LESCs. To perform this procedure, a substratum is necessary for in vitro culturing of limbal epithelial cells and their subsequent transplantation onto the ocular surface. In this work, we evaluated poly-L/DL-lactic acid 70:30 (PLA) films functionalized with type IV collagen (col IV) as potential in vitro carrier substrata for LESCs. We first demonstrated that PLA-col IV films were biocompatible and suitable for the proliferation of human corneal epithelial cells. Subsequently, limbal epithelial cell suspensions, isolated from human limbal rings, were cultivated using culture medium that did not contain animal components. The cells adhered significantly faster to PLA-col IV films than to tissue culture plastic (TCP). The mRNA expression levels for the LESC specific markers, K15, P63α and ABCG2 were similar or greater (significantly in the case of K15) in limbal epithelial cells cultured on PLA-col IV films than limbal epithelial cells cultured on TCP. The percentage of cells expressing the corneal (K3, K12) and the LESC (P63α, ABCG2) specific markers was similar for both substrata. These results suggest that the PLA-col IV films promoted LESC attachment and helped to maintain their undifferentiated stem cell phenotype. Consequently, these substrata offer an alternative for the transplantation of limbal cells onto the ocular surface. ; This work was supported by the Carlos III National Institute of Health, Spain (CIBER-BBN and Spanish Network on Cell Therapy, (TerCel RD12/0019/0036), MINECO/FEDER, EU), and the Castilla y León Regional Government, Spain (Regional Center for Regenerative Medicine and Cell Therapy, SAN673/VA/28/08 and SAN126/VA11/09).
BASE