In: Bulletin of the World Health Organization: the international journal of public health = Bulletin de l'Organisation Mondiale de la Santé, Band 89, Heft 7, S. 528-531
In 2020, 77% of malaria cases in the Americas were concentrated in Venezuela, Brazil, and Colombia. These countries are characterized by a heterogeneous malaria landscape and malaria hotspots. Furthermore, the political unrest in Venezuela has led to significant cross-border population movement. Hence, the aim of this study was to describe spatial patterns and identify significant climatic drivers of malaria transmission along the Venezuela-Brazil-Guyana border, focusing on Bolivar state, Venezuela and Roraima state, Brazil. Malaria case data, stratified by species from 2016 to 2018, were obtained from the Brazilian Malaria Epidemiology Surveillance Information System, the Guyana Vector Borne Diseases Program, the Venezuelan Ministry of Health, and civil society organizations. Spatial autocorrelation in malaria incidence was explored using Getis-Ord (Gi*) statistics. A Poisson regression model was developed with a conditional autoregressive prior structure and posterior parameters were estimated using the Bayesian Markov chain Monte Carlo simulation with Gibbs sampling. There were 685,498 malaria cases during the study period. Plasmodium vivax was the predominant species (71.7%, 490,861). Malaria hotspots were located in eight municipalities along the Venezuela and Guyana international borders with Brazil. Plasmodium falciparum increased by 2.6% (95% credible interval [CrI] 2.1%, 2.8%) for one meter increase in altitude, decreased by 1.6% (95% CrI 1.5%, 2.3%) and 0.9% (95% CrI 0.7%, 2.4%) per 1 cm increase in 6-month lagged precipitation and each 1 °C increase of minimum temperature without lag. Each 1 °C increase of 1-month lagged maximum temperature increased P. falciparum by 0.6% (95% CrI 0.4%, 1.9%). P. vivax cases increased by 1.5% (95% CrI 1.3%, 1.6%) for one meter increase in altitude and decreased by 1.1% (95% CrI 1.0%, 1.2%) and 7.3% (95% CrI 6.7%, 9.7%) for each 1 cm increase of precipitation lagged at 6-months and 1 °C increase in minimum temperature lagged at 6-months. Each 1°C increase of two-month ...
National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.