Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) ; U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Fending Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Collaborating Institutions in the Dark Energy Survey ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; associated Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory, Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science foundation ; MINECO ; European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; CNPq: 141935/2014-6 ; CNPq: 465376/2014-2 ; National Science foundation: AST-1138766 ; National Science foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; We use data from the first-year observations of the DES collaboration to measure the galaxy angular power spectrum (APS), and search for its BAO feature. We test our methodology in a sample of 1800 DES Y1-like mock catalogues. We use the pseudo-C-l, method to estimate the APS and the mock catalogues to estimate its covariance matrix. We use templates to model the measured spectra and estimate template parameters firstly from the G's of the mocks using two different methods, a maximum likelihood estimator and a Markov Chain Monte Carlo, finding consistent results with a good reduced chi(2). Robustness tests are performed to estimate the impact of different choices of settings used in our analysis. Finally, we apply our method to a galaxy sample constructed from DES Y1 data specifically for LSS studies. This catalogue comprises galaxies within an effective area of 1318 deg(2) and 0.6 < z < 1.0. We find that the DES Y1 data favour a model with BAO at the 2.6 sigma C.L. However, the goodness of fit is somewhat poor, with chi(2)/(d.o.f.) = 1.49. We identify a possible cause showing that using a theoretical covariance matrix obtained from C-l's that are better adjusted to data results in an improved value of chi(2)/(dof) = 1.36 which is similar to the value obtained with the real-space analysis. Our results correspond to a distance measurement of D-A (Z(eff) = 0.81)/r(d) = 10.65 +/- 0.49, consistent with the main DES BAO findings. This is a companion paper to the main DES BAO article showing the details of the harmonic space analysis.
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; associated Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory, Stanford University ; University of Sussex ; Texas AM University ; National Science Foundation ; MINECO ; Centro de Excelencia Severo Ochoa ; European Research Council under the European Union ; ERC ; NSF Physics Frontier Center ; Kavli Foundation ; Gordon and Betty Moore Foundation ; European Research Council ; CNES ; Royal Society of New Zealand Rutherford Foundation Trust ; Cambridge Commonwealth Trust ; University of Melbourne ; DOE ; ICREA ; Science and Technology Facilities Council ; National Science Foundation: AST-1138766 ; National Science Foundation: PLR-1248097 ; MINECO: AYA2012-39559 ; MINECO: ESP2013-48274 ; MINECO: FPA2013-47986 ; Centro de Excelencia Severo Ochoa: SEV-2012-0234 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; NSF Physics Frontier Center: PHY-0114422 ; Gordon and Betty Moore Foundation: 947 ; European Research Council: FP7/291329 ; DOE: DE-AC02-98CH10886 ; Science and Technology Facilities Council: ST/K00090X/1 ; Science and Technology Facilities Council: ST/N000668/1 ; Science and Technology Facilities Council: ST/L000768/1 ; Science and Technology Facilities Council: ST/M001334/1 ; We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at the Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule (ETH) Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai (IEEC/CSIC) ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLACNational Accelerator Laboratory ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; NSF ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-88861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2012-0234 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; NSF: ACI-1445606 ; We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, Lambda CDM and wCDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data. We consider four extensions of the minimal dark energy-dominated scenarios: (1) nonzero curvature Omega(k), (2) number of relativistic species N-eff different from the standard value of 3.046, (3) time-varying equation-of-state of dark energy described by the parameters w(0) and w(a) (alternatively quoted by the values at the pivot redshift, w(p), and w(a)), and (4) modified gravity described by the parameters is mu(0) and Sigma(0) that modify the metric potentials. We also consider external information from Planck cosmic microwave background measurements; baryon acoustic oscillation measurements from SDSS, 6dF, and BOSS; redshift-space distortion measurements from BOSS; and type Ia supernova information from the Pantheon compilation of datasets. Constraints on curvature and the number of relativistic species are dominated by the external data; when these are combined with DES Y1, we find Omega(k) = 0.0020(-0.0032)(+0.0037) at the 68% confidence level, and the upper limit N-eff 3.0. For the time-varying equation-of-state, we find the pivot value (w(p), w(a)) = (-0.91(-0.23)(+0.19), -0.57(-1.11)(+0.93)) at pivot redshift z(p )= 0.27 from DES alone, and (w(p), w(a)) = (-1.01(-0.04)(+0.04), -0.28(-0.48)(+0.37)) at z(p) = 0.20 from DES Y1 combined with external data; in either case we find no evidence for the temporal variation of the equation of state. For modified gravity, we find the present-day value of the relevant parameters to be Sigma(0) = 0.43(-)(0.29)(+0.28) from DES Y1 alone, and (Sigma(0), mu(0)) = (0.06(-0.07)(+0.08), -0.11(-0.46)(+0.42)) from DES Y1 combined with external data. These modified-gravity constraints are consistent with predictions from general relativity.
DOE (USA) ; NSF (USA) ; MEC/MICINN/MINECO (Spain) ; STFC (UK) ; HEFCE (United Kingdom) ; NCSA (UIUC) ; KICP (U. Chicago) ; CCAPP (Ohio State) ; MIFPA (Texas AM) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; FINEP (Brazil) ; DFG (Germany) ; Argonne Lab ; UC Santa Cruz ; University of Cambridge ; CIEMAT-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; ETH Zurich ; Fermilab ; University of Illinois ; ICE (IEEC-CSIC) ; IFAE Barcelona ; Lawrence Berkeley Lab ; LMU Munchen ; Excellence Cluster Universe ; University of Michigan ; NOAO ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Lab ; Stanford University ; University of Sussex ; Texas AM University ; OzDES Membership Consortium ; NSF ; MINECO ; ERDF funds from the European Union ; CERCA program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) ; ERC ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; NSF: AST-1138766 ; NSF: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-66861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2016-0588 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509 ; ERC: 240672 ; ERC: 291329 ; ERC: 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO): CE110001020 ; CNPq: 465376/2014-2 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; The combination of multiple observational probes has long been advocated as a powerful technique to constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207 spectroscopically confirmed type Ia supernova light curves, the baryon acoustic oscillation feature, weak gravitational lensing, and galaxy clustering. Here we present combined results from these probes, deriving constraints on the equation of state, w, of dark energy and its energy density in the Universe. Independently of other experiments, such as those that measure the cosmic microwave background, the probes from this single photometric survey rule out a Universe with no dark energy, finding w = -0.80(-0.11)(+0.09). The geometry is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of Omega(b) = 0.069(-0.012)(+0.009) that is independent of early Universe measurements. These results demonstrate the potential power of large multiprobe photometric surveys and pave the way for order of magnitude advances in our constraints on properties of dark energy and cosmology over the next decade.
U.S. Department of Energy ; U.S. National Science Foundation ; Ministry of Science and Education of Spain ; Science and Technology Facilities Council of the United Kingdom ; Higher Education Funding Council for England ; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign ; Kavli Institute of Cosmological Physics at the University of Chicago ; Center for Cosmology and Astro-Particle Physics at Ohio State University ; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University ; Financiadora de Estudos e Projetos ; Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) ; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) ; Ministerio da Ciencia, Tecnologia e Inovacao ; Deutsche Forschungsgemeinschaft ; Argonne National Laboratory ; University of California at Santa Cruz ; University of Cambridge ; Centro de Investigaciones Energeticas ; Medioambientales y Tecnologicas-Madrid ; University of Chicago ; University College London ; DES-Brazil Consortium ; University of Edinburgh ; Eidgenossische Technische Hochschule Zurich ; Fermi National Accelerator Laboratory ; University of Illinois at Urbana-Champaign ; Institut de Ciencies de l'Espai ; Institut de Fisica d'Altes Energies ; Lawrence Berkeley National Laboratory ; Ludwig-Maximilians Universitat Munchen ; Excellence Cluster Universe ; University of Michigan ; National Optical Astronomy Observatory ; University of Nottingham ; Ohio State University ; University of Pennsylvania ; University of Portsmouth ; SLAC National Accelerator Laboratory, Stanford University ; University of Sussex ; Texas A M University ; OzDES Membership Consortium ; National Science Foundation ; MINECO ; European Union ; Centres de Recerce de Catalunya (CERCA) program of the Generalitat de Catalunya ; European Research Council under the European Union's Seventh Framework Program (FP7) ; Australian Research Council Centre of Excellence for All-sky Astrophysics ; U.S. Department of Energy, Office of Science, Office of High Energy Physics ; Office of Science of the U.S. Department of Energy ; National Science Foundation: AST-1138766 ; National Science Foundation: AST-1536171 ; MINECO: AYA2015-71825 ; MINECO: ESP2015-88861 ; MINECO: FPA2015-68048 ; MINECO: SEV-2012-0234 ; MINECO: SEV-2016-0597 ; MINECO: MDM-2015-0509, ; European Research Council under the European Union's Seventh Framework Program (FP7): 240672 ; European Research Council under the European Union's Seventh Framework Program (FP7): 291329 ; European Research Council under the European Union's Seventh Framework Program (FP7): 306478 ; Australian Research Council Centre of Excellence for All-sky Astrophysics: CE110001020 ; U.S. Department of Energy, Office of Science, Office of High Energy Physics: DE-AC02-07CH11359 ; Office of Science of the U.S. Department of Energy: DE-AC02-05CH11231 ; We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg(2) of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric-redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat Lambda CDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for Lambda CDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 x 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions and from their combination obtain S-8 equivalent to sigma(8) (Omega(m)/0.3)(0.5) = 0.773(-0.020)(+0.026) and Omega(m) = 0.267(-0.017)(+0.030) for Lambda CDM; for wCDM, we find S-8 = 0.782(-0.024)(+0.036) , Omega(m) = 0.284(-0.030)(+0.033), and w = -0.82(-0.20)(+0.21) at 68% C.L. The precision of these DES Y1 constraints rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for S-8 and Omega(m) are lower than the central values from Planck for both Lambda CDM and wCDM, the Bayes factor indicates that the DES Y1 and Planck data sets are consistent with each other in the context of Lambda CDM. Combining DES Y1 with Planck, baryonic acoustic oscillation measurements from SDSS, 6dF, and BOSS and type Ia supernovae from the Joint Lightcurve Analysis data set, we derive very tight constraints on cosmological parameters: S-8 = 0.802 +/- 0.012 and Omega(m) = 0.298 +/- 0.007 in Lambda CDM and w = -1.00(-0.04)(+0.05) in wCDM. Upcoming Dark Energy Survey analyses will provide more stringent tests of the Lambda CDM model and extensions such as a time-varying equation of state of dark energy or modified gravity.