Managing forest ecosystems: the challenge of climate change
In: Managing forest ecosystems 17
6 Ergebnisse
Sortierung:
In: Managing forest ecosystems 17
In: Encrucijada Americana: revista electrónica del Departamento de Ciencia Política y Relaciones Internacionales de la Universidad Alberto Hurtado, Band 13, Heft 1, S. 7
ISSN: 0718-5766
El presente artículo realiza una discusión crítica de las principales investigaciones que han estudiado, directa o tangencialmente, las tendencias del comportamiento político en el Chile contemporáneo, con particular énfasis en aquellos que analizan las dinámicas del comportamiento electoral nacional y los vínculos subjetivos de la ciudadanía con la institucionalidad política durante las últimas tres décadas. De esta manera, se discutirá el impacto que han tenido sobre el comportamiento político y electoral fenómenos sociales complejos, como la formación de generaciones políticas, la distribución sociodemográfica de las actitudes hacia lo político y la identificación partidaria, la conformación de nuevas subjetividades políticas promovidas por los cambios en la estructura social del país, el ascenso de la desafección, apatía y crisis de representación política, en conjunto con perspectivas economicistas que indagan los efectos de los costos de información y el gasto electoral en las y los votantes del país.
14 Pág. ; While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe. We used 21 triplets (5 beech-oak, 8 pine-beech, 8 pine-oak mixed stands, and their respective monocultures at the same sites) in seven European countries. We computed biomass C stocks from total stand inventories and species-specific allometric equations, and soil organic C data down to 40 cm depth. On average, the broadleaved species stored more C in aboveground woody biomass than soil, while C storage in pine was equally distributed between both components. Stand density had a strong effect on C storage in tree woody biomass but not in the soil. After controlling for stand basal area, the mixed stands had, on average, similar total C stocks (in aboveground woody biomass + coarse roots + soil) to the most performing monocultures. Although species composition and stand density affect total C stocks and its partitioning between aboveground woody biomass and soil, a large part of variability in soil C storage was unrelated to stand characteristics. ; The European Union and the National Fund for Scientific Research (Fonds de la recherche scientifique) of Belgium supported this research as part the ERA-Net SUMFOREST project REFORM–Mixed species forest management. Lowering risk, increasing resilience (www.reform-mixing.eu). The lead author was further supported by Université catholique de Louvain for covid-19 related delays of his PhD project. Some of the triplets were selected, established and measured with funding from the ...
BASE
En el presente trabajo se presenta una revisión sobre los modelos forestales desarrollados en España durante los últimos años, tanto para la producción maderable como no maderable y, para la dinámica de los bosques (regeneración, mortalidad). Se presentan modelos tanto de rodal completo como de clases diamétricas y de árbol individual. Los modelos desarrollados hasta la fecha se han desarrollado a partir de datos procedentes de parcelas permanentes, ensayos y el Inventario Forestal Nacional. En el trabajo se muestran los diferentes submodelos desarrollados hasta la fecha, así como las plataformas informáticas que permiten utilizar dichos modelos. Se incluyen las principales perspectivas de desarrollo de la modelización forestal en España. ; In this paper we present a review of forest models developed in Spain in recent years for both timber and non timber production and forest dynamics (regeneration, mortality). Models developed are whole stand, size (diameter) class and individual-tree. The models developed to date have been developed using data from permanent plots, experimental sites and the National Forest Inventory. In this paper we show the different sub-models developed so far and the friendly use software. Main perspectives of forest modeling in Spain are presented. ; The models described in this paper were funded by different regional, national and European projects, and some of them were elaborated by the authors. This work was funded by the Spanish Government by the SELVIRED network (code AGL2008-03740) and the strategic project «Restauración y Gestión Forestal» (code PSE-310000-2009-4).
BASE
Recent studies show that several tree species are spreading to higher latitudes and elevations due to climate change. European beech, presently dominating from the colline to the subalpine vegetation belt, is already present in upper montane subalpine forests and has a high potential to further advance to higher elevations in European mountain forests, where the temperature is predicted to further increase in the near future. Although essential for adaptive silviculture, it remains unknown whether the upward shift of beech could be assisted when it is mixed with Norway spruce or silver fir compared with mono-specific stands, as the species interactions under such conditions are hardly known. In this study, we posed the general hypotheses that the growth depending on age of European beech in mountain forests was similar in mono-specific and mixed-species stands and remained stable over time and space in the last two centuries. The scrutiny of these hypotheses was based on increment coring of 1240 dominant beech trees in 45 plots in mono-specific stands of beech and in 46 mixed mountain forests. We found that (i) on average, mean tree diameter increased linearly with age. The age trend was linear in both forest types, but the slope of the age–growth relationship was higher in mono-specific than in mixed mountain forests. (ii) Beech growth in mono-specific stands was stronger reduced with increasing elevation than that in mixed-species stands. (iii) Beech growth in mono-specific stands was on average higher than beech growth in mixed stands. However, at elevations > 1200 m, growth of beech in mixed stands was higher than that in mono-specific stands. Differences in the growth patterns among elevation zones are less pronounced now than in the past, in both mono-specific and mixed stands. As the higher and longer persisting growth rates extend the flexibility of suitable ages or size for tree harvest and removal, the longer-lasting growth may be of special relevance for multi-aged silviculture concepts. On top of their function for structure and habitat improvement, the remaining old trees may grow more in mass and value than assumed so far. ; The authors would like to acknowledge networking support by the COST (European Cooperation in Science and Technology) Action CLIMO (Climate-Smart Forestry in Mountain Regions—CA15226) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. This publication is part of a project that has received funding from the European Union's HORIZON 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 778322. Thanks are also due to the European Union for funding the project 'Mixed species forest management. Lowering risk, increasing resilience (REFORM)' (# 2816ERA02S under the framework of Sumforest ERA-Net). Further, we would like to thank the Bayerische Staatsforsten (BaySF) for providing the observational plots and to the Bavarian State Ministry of Food, Agriculture, and Forestry for permanent support of the Project W 07 'Long-term experimental plots for forest growth and yield research' (#7831-26625-2017). We also thank the Forest Research Institute, ERTI Sárvár, Hungary, for assistance and for providing observational plots. Furthermore, our work was partially supported by the SRDA via Project No. APVV-16-0325 and APVV-15-0265, the Ministry of Science and Higher Education of the Republic of Poland, the Project "EVA4.0" No. CZ.02.1.01/0.0/0.0/16_019/0000803 funded by OP RDE and the Project J4-1765 funded by the Slovenian Research Agency and also by the Bulgarian National Science Fund (BNSF) and the Project No. DCOST 01/3/19.10.2018.
BASE
In: FORECO-D-22-00744
SSRN