The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005
An increase of 0.31 ± 0.03 % year−1 of atmospheric methane is reported using 10 years of solar observations performed at 10 ground-based stations since 2005. These trend agree with a GEOS-Chem-tagged simulation that accounts for the contribution of each emission source and one sink in the total methane. The GEOS-Chem simulation shows that anthropogenic emissions from coal mining and gas and oil transport and exploration have played a major role in the increase methane since 2005. ; W. Bader has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 704951, and from the University of Toronto through a Faculty of Arts & Science Postdoctoral Fellowship Award. E. Mahieu is a Research Associate with the F.R.S.–FNRS. The F.R.S.–FNRS further supported this work under Grant no. J.0093.15 and the Fédération Wallonie Bruxelles contributed to supporting observational activities. The Centre for Atmospheric Chemistry at the University of Wollongong involvement in this work is funded by Australian Research Council projects DP1601021598 and LE0668470.