Beyond map view: teaching the conceptualisation and visualisation of geology through 3D and 4D geological models
In: Planet, Band 25, Heft 1, S. 7-15
ISSN: 1758-3608
9 Ergebnisse
Sortierung:
In: Planet, Band 25, Heft 1, S. 7-15
ISSN: 1758-3608
J. Alcalde and C.E. Bond were supported by ClimateXChange, on the project: Work stream on Perception and Communication of Risk and Uncertainty. The input of P. Smith contributes to the following projects: DEVIL (NE/M021327/1), MAGLUE (EP/M013200/1), U-GRASS (NE/M016900/1), Assess-BECCS (funded by UKERC) and Soils-RGRREAT (NE/P019455/1). R. S. Haszeldine is funded by the Scottish Government (SCCS 2017) and EPSRC EP/P026214/1. ; Peer reviewed ; Publisher PDF
BASE
7 pages, 3 figures, 1 table ; The reduction of anthropogenic greenhouse gas emission rates alone appears insufficient to limit the rise in global temperatures. Negative Emission Technologies (NETs) can be helpful in this critical goal by actively removing CO from the atmosphere. Industrialised countries like Scotland will require NETs to address their climate targets and reach net-zero carbon emissions in a timely manner. However, the implementation of NETs has varied energy, economic and environmental implications that need to be analysed in detail. In this paper, we explore the potential energy and economic costs for implementation of land-based NETs in Scotland. This analysis is based on the calculated averaged costs of the different technologies and the availability of resources for its implementation in Scotland. We found that the country has a maximum technical potential to abate 90–100% of its annual CO emissions by means of land-based NETs, thanks to its low annual emissions and large land area for implementation of NETs. Even in less optimistic scenarios, Scotland is exceptionally well suited for land NETs, which can complement and enhance the potential of more conventional technologies, like renewable energy resources. Our results show that Scotland could lead the transformation towards a carbon-neutral society ; The input of P. Smith contributes to the following projects: DEVIL (NE/M021327/1), MAGLUE (EP/M013200/1), U-GRASS (NE/M016900/1), Assess-BECCS (funded by UKERC) and Soils-RGRREAT (NE/P019455/1). R. S. Haszeldine is funded by the Scottish Government (SCCS 2017) and EPSRC EP/P026214/1 ; Peer Reviewed
BASE
The use of conceptual models is essential in the interpretation of reflection seismic data. It allows interpreters to make geological sense of seismic data, which carries inherent uncertainty. However, conceptual models can create powerful anchors that prevent interpreters from reassessing and adapting their interpretations as part of the interpretation process, which can subsequently lead to flawed or erroneous outcomes. It is therefore critical to understand how conceptual models are generated and applied to reduce unwanted effects in interpretation results. Here we have tested how interpretation of vertically exaggerated seismic data influenced the creation and adoption of the conceptual models of 161 participants in a paper-based interpretation experiment. Participants were asked to interpret a series of faults and a horizon, offset by those faults, in a seismic section. The seismic section was randomly presented to the participants with different horizontal–vertical exaggeration (1:4 or 1:2). Statistical analysis of the results indicates that early anchoring to specific conceptual models had the most impact on interpretation outcome, with the degree of vertical exaggeration having a subdued influence. Three different conceptual models were adopted by participants, constrained by initial observations of the seismic data. Interpreted fault dip angles show no evidence of other constraints (e.g. from the application of accepted fault dip models). Our results provide evidence of biases in interpretation of uncertain geological and geophysical data, including the use of heuristics to form initial conceptual models and anchoring to these models, confirming the need for increased understanding and mitigation of these biases to improve interpretation outcomes.© Author(s) 2019. ; Juan Alcalde has been supported by the Natural Environment Research Council (grant no. NE/M007251/1) and the H2020 European Institute of Innovation and Technology (SIT4ME (grant no. 17024)). Clare E. Bond is currently funded through a Royal Society of Edinburgh research sabbatical on uncertainty in seismic image interpretation. Gareth Johnson is funded by the University of Strathclyde Faculty of Engineering. Oriol Ferrer has been supported by the SALCONBELT Project (grant no. CGL2017-85532-P), the Geomodels Research Institute and the Grup de Geodinàmica i Anàlisi de Conques (grant no. 2017SGR-596). Puy Ayarza is funded by the Regional Government of Castile and León (project SA065P17). ; Peer reviewed
BASE
Juan Alcalde has been supported by the Natural Environment Research Council (grant no. NE/M007251/1) and the H2020 European Institute of Innovation and Technology (SIT4ME (grant no. 17024)). Clare E. Bond is currently funded through a Royal Society of Edinburgh research sabbatical on uncertainty in seismic image interpretation. Gareth Johnson is funded by the University of Strathclyde Faculty of Engineering. Oriol Ferrer has been supported by the SALCONBELT Project (grant no. CGL2017-85532-P), the Geomodels Research Institute and the Grup de Geodinàmica i Anàlisi de Conques (grant no. 2017SGR-596). Puy Ayarza is funded by the Regional Government of Castile and León (project SA065P17). The seismic image used in the experiment is available on the Virtual Seismic Atlas (https://www.seismicatlas.org, last access: 30 September 2019). The questionnaire presented to the participants is available in the Supplement. Interpretations and statistical analyses are available upon request. ; Peer reviewed ; Publisher PDF
BASE
In: 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14)
SSRN
Working paper
In: 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14)
SSRN
Working paper
The authors would like to acknowledge the financial support of the UK CCS Research Centre (www.ukccsrc.ac.uk) in carrying out this work. Author Kremer is supported by NERC grant NE/N015908/1. The UKCCSRC is funded by the EPSRC as part of the RCUK Energy Programme. Midland Valley Exploration are thanked for an academic license for Move. Porosity and permeability analysis were undertaken in the University of Aberdeen Petrophysics laboratory with the aid of Sophie Harland. The South African National Energy Development Institute (SANEDI) Stakeholder Engagement team under the South African Centre for Carbon Capture & Storage (SACCCS) is thanked for making the scientific work possible. The National, Provincial and Local Government structures including Traditional Authorities, Municipalities, landowners and local residents are thanked for granting permission to conduct the monitoring in the areas of interest. CGS staff are thanked for their assistance and support in the field. We thank two anonymous reviewers for their comments, which helped to improve the manuscript. ; Peer reviewed ; Postprint
BASE
The work was supported by funding from the UK CCS Research Centre (UKCCSRC). The UKCCSRC is funded by the EPSRC as part of the RCUK Energy Programme. The South African National Energy Development Institute (SANEDI) Stakeholder Engagement team under the South African Centre for Carbon Capture & Storage (SACCCS) is thanked for making the scientific work possible. The National, Provincial and Local Government structures including Traditional Authorities, Municipalities, landowners and local residents are thanked for granting permission to conduct the monitoring in the areas of interest. Council for Geoscience staff are thanked for their assistance and support in the field. ; Peer reviewed ; Publisher PDF
BASE