Modelling climate change impacts for food security
In: Climate research 65(2015)
In: Climate research : [...], Special 31
10 Ergebnisse
Sortierung:
In: Climate research 65(2015)
In: Climate research : [...], Special 31
In: Proceedings and report 50
In: Computers and electronics in agriculture: COMPAG online ; an international journal, Band 197, S. 106937
In: Ecology and society: E&S ; a journal of integrative science for resilience and sustainability, Band 16, Heft 2
ISSN: 1708-3087
In: SEGAN-D-23-01589
SSRN
In: Ecology and society: E&S ; a journal of integrative science for resilience and sustainability, Band 20, Heft 4
ISSN: 1708-3087
Acknowledgements We wish to thank all participants to the SmartSOIL project for their inspiring inputs and debates and for having shared their valuable expertise, contributing to the success of this project. Furthermore, we are grateful to the financial support from the 7th Framework Programme of the European Union (Call identifier: FP7-KBBE-2011-5; project number: 289694). ; Peer reviewed ; Postprint
BASE
Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo- and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in different ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at different latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under- or over-estimations of budbreak date under different environmental conditions. ; This research was funded by the European Union's Horizon 2020 Research and Innovation Programme, under the Clim4Vitis project: "Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach", grant agreement no. 810176. It was also supported by FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020 and the French National Research Agency (ANR) in the frame of the Investments for the Future Program, within the cluster of excellence COTE (ANR-10-LABX-45).
BASE
This work was conducted by the Models4Pastures consortium project under the auspices of FACCE-JPI. Funding was provided by: the New Zealand Government to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases; AgResearch's Strategic Science Investment Fund as a contribution to the Forages for Reduced Nitrate Leaching (FRNL) research programme; the input of UK partners was funded by DEFRA and also contributes to the RCUK-funded projects: N-Circle (BB/N013484/1), UGRASS (NE/M016900/1) and GREENHOUSE (NE/K002589/1). R.M. Rees and C.F.E. Topp also received funding from the Scottish Government Strategic Research Programme. Lutz Merbold and Kathrin Fuchs acknowledge funding received for the Swiss contribution to Models4Pastures (FACCE-JPI project, SNSF funded contract: 40FA40_154245/1) and for the Doc.Mobility fellowship (SNSF funded project: P1EZP2_172121). Lorenzo Brilli, Camilla Dibari and Marco Bindi acknowledge funding received from the Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF). ; Peer reviewed ; Publisher PDF
BASE
Funding Information: This modeling study was a joint effort of the Models4Pastures project within the framework of FACCE-JPI. Lutz Merbold and Kathrin Fuchs acknowledge funding received for the Swiss contribution to Models4Pastures (FACCE-JPI project, SNSF funded contract: 40FA40_154245/1) and for the Doc. Mobility fellowship (SNSF funded project: P1EZP2_172121). Lutz Merbold further acknowledges the support received for CGIAR Fund Council, Australia (ACIAR), Irish Aid, the European Union, the Netherlands, New Zealand, Switzerland, UK, USAID, and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) as well as for the CGIAR Research Program on Livestock. The NZ contributors acknowledge funding from the New Zealand Government Ministry of Primary Industries to support the aims of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases and from AgResearch's Strategic Science Investment Fund (the Forages for Reduced Nitrate Leaching (FRNL) research program). The UK partners acknowledge funding by DEFRA and the RCUK projects: N-Circle (BB/N013484/1), UGRASS (NE/M016900/1), and GREENHOUSE (NE/K002589/1). R.M. Rees and C.F.E. Topp also received funding from the Scottish Government Strategic Research Programme. Lorenzo Brilli, Camilla Dibari, and Marco Bindi received funding from the Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF). The FR partners acknowledge funding from CN-MIP project funded by the French National Research Agency (ANR-13-JFAC-0001) and from ADEME (no. 12-60-C0023). Open access funding enabled and organized by Projekt DEAL Funding Information: This modeling study was a joint effort of the Models4Pastures project within the framework of FACCE‐JPI. Lutz Merbold and Kathrin Fuchs acknowledge funding received for the Swiss contribution to Models4Pastures (FACCE‐JPI project, SNSF funded contract: 40FA40_154245/1) and for the Doc. Mobility fellowship (SNSF funded project: P1EZP2_172121). Lutz Merbold further acknowledges the support received for CGIAR Fund Council, Australia (ACIAR), Irish Aid, the European Union, the Netherlands, New Zealand, Switzerland, UK, USAID, and Thailand for funding to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) as well as for the CGIAR Research Program on Livestock. The NZ contributors acknowledge funding from the New Zealand Government Ministry of Primary Industries to support the aims of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases and from AgResearch's Strategic Science Investment Fund (the Forages for Reduced Nitrate Leaching (FRNL) research program). The UK partners acknowledge funding by DEFRA and the RCUK projects: N‐Circle (BB/N013484/1), UGRASS (NE/M016900/1), and GREENHOUSE (NE/K002589/1). R.M. Rees and C.F.E. Topp also received funding from the Scottish Government Strategic Research Programme. Lorenzo Brilli, Camilla Dibari, and Marco Bindi received funding from the Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF). The FR partners acknowledge funding from CN‐MIP project funded by the French National Research Agency (ANR‐13‐JFAC‐0001) and from ADEME (no. 12‐60‐C0023). Open access funding enabled and organized by Projekt DEAL Publisher Copyright: ©2020. The Authors. Open access funding enabled and organized by Projekt DEAL ; Peer reviewed ; Publisher PDF
BASE