Suchergebnisse
Filter
3 Ergebnisse
Sortierung:
Systematic network coding with overlap for IoT scenarios
The presence of IoT in current networking scenarios is more relevant every day. IoT covers a wide range of applications, ranging from wearable devices to vehicular communications. With the consolidation of Industry 4.0, IIoT (Industrial IoT) environments are becoming more common. Communications in these scenarios are mostly wireless, and due to the lossy nature of wireless communications, the loss of information becomes an intrinsic problem. However, loss recovery schemes increase the delay that characterizes any communication. On the other hand, both reliability (robustness) and low delay are crucial requirements for some applications in IIoT. An interesting strategy to improve both of them is the use of Network Coding techniques, which have shown promising results, in terms of increasing reliability and performance. This work focuses on a possible new coding approach, based on systematic network coding scheme with overlapping generations. We perform a thorough analysis of its behavior. Based on the results, we draw out a number of conclusions for practical implementations in wireless networks, focusing our interest in IIoT environments. ; The authors are grateful for the funding of the Industrial Doctorates Program from the University of Cantabria (Call 2018). This work has been partially supported by the Basque Government through the Elkartek program under the DIGITAL project (Grant agreement no. KK-2019/00095), as well as by the Spanish Government (MINECO, MCIU, AEI, FEDER) by means of the projects ADVICE: Dynamic provisioning of connectivity in high density 5G wireless scenarios (TEC2015-71329-C2-1-R) and FIERCE: Future Internet Enabled Resilient Cities (RTI2018-093475-A-100).
BASE
On the combination of multi-cloud and network coding for cost-efficient storage in industrial applications
The adoption of both Cyber-Physical Systems (CPSs) and the Internet-of-Things (IoT) has enabled the evolution towards the so-called Industry 4.0. These technologies, together with cloud computing and artificial intelligence, foster new business opportunities. Besides, several industrial applications need immediate decision making and fog computing is emerging as a promising solution to address such requirement. In order to achieve a cost-efficient system, we propose taking advantage from spot instances, a new service offered by cloud providers, which provide resources at lower prices. The main downside of these instances is that they do not ensure service continuity and they might suffer from interruptions. An architecture that combines fog and multi-cloud deployments along with Network Coding (NC) techniques, guarantees the needed fault-tolerance for the cloud environment, and also reduces the required amount of redundant data to provide reliable services. In this paper we analyze how NC can actually help to reduce the storage cost and improve the resource efficiency for industrial applications, based on a multi-cloud infrastructure. The cost analysis has been carried out using both real AWS EC2 spot instance prices and, to complement them, prices obtained from a model based on a finite Markov chain, derived from real measurements. We have analyzed the overall system cost, depending on different parameters, showing that configurations that seek to minimize the storage yield a higher cost reduction, due to the strong impact of storage cost. ; This work has been partially supported by the Basque Government through the Elkartek program (Grant agreement no. KK-2018/00115), the H2020 research framework of the European Commission under the ELASTIC project (Grant agreement no. 825473), and the Spanish Ministry of Economy and Competitiveness through the CARMEN project (TEC2016-75067-C4-3-R), the ADVICE project (TEC2015-71329-C2-1-R), and the COMONSENS network (TEC2015-69648-REDC).
BASE