IgD attenuates the IgM-induced anergy response in transitional and mature B cells
Self-tolerance by clonal anergy of B cells is marked by an increase in IgD and decrease in IgM antigen receptor surface expression, yet the function of IgD on anergic cells is obscure. Here we define the RNA landscape of the in vivo anergy response, comprising 220 induced sequences including a core set of 97. Failure to co-express IgD with IgM decreases overall expression of receptors for self-antigen, but paradoxically increases the core anergy response, exemplified by increased Sdc1 encoding the cell surface marker syndecan-1. IgD expressed on its own is nevertheless competent to induce calcium signalling and the core anergy mRNA response. Syndecan-1 induction correlates with reduction of surface IgM and is exaggerated without surface IgD in many transitional and mature B cells. These results show that IgD attenuates the response to self-antigen in anergic cells and promotes their accumulation. In this way, IgD minimizes tolerance-induced holes in the pre-immune antibody repertoire. ; This work was supported by NIH grant U19 AI100627 and NHMRC grants 585490, 1016953 and 1081858 to C.C.G., NHMRC CJ Martin Fellowship 595989 to J.H.R., an Endeavour Award from the Australian Government to Z.S. and the National Collaborative Research Infrastructure Scheme Australian Phenomics Facility