The New Business of Nanotechnology: Exploring Commercial Opportunities and Risks
In: Environmental claims journal, Band 20, Heft 2, S. 144-159
ISSN: 1547-657X
8 Ergebnisse
Sortierung:
In: Environmental claims journal, Band 20, Heft 2, S. 144-159
ISSN: 1547-657X
There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles, to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.
BASE
There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles, to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.
BASE
For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.
BASE
For nanotechnology to meet its potential as a game-changing and sustainable technology, it is important to ensure that the engineered nanomaterials and nanoenabled products that gain entry to the marketplace are safe and effective. Tools and methods are needed for regulatory purposes to allow rapid material categorization according to human health and environmental risk potential, so that materials of high concern can be targeted for additional scrutiny, while material categories that pose the least risk can receive expedited review. Using carbon nanotubes as an example, we discuss how data from alternative testing strategies can be used to facilitate engineered nanomaterial categorization according to risk potential and how such an approach could facilitate regulatory decision-making in the future.
BASE
There has been a conceptual shift in toxicological studies from describing what happens to explaining how the adverse outcome occurs, thereby enabling a deeper and improved understanding of how biomolecular and mechanistic profiling can inform hazard identification and improve risk assessment. Compared to traditional toxicology methods, which have a heavy reliance on animals, new approaches to generate toxicological data are becoming available for the safety assessment of chemicals, including high-throughput and high-content screening (HTS, HCS). With the emergence of nanotechnology, the exponential increase in the total number of engineered nanomaterials (ENMs) in research, development, and commercialization requires a robust scientific approach to screen ENM safety in humans and the environment rapidly and efficiently. Spurred by the developments in chemical testing, a promising new toxicological paradigm for ENMs is to use alternative test strategies (ATS), which reduce reliance on animal testing through the use of in vitro and in silico methods such as HTS, HCS, and computational modeling. Furthermore, this allows for the comparative analysis of large numbers of ENMs simultaneously and for hazard assessment at various stages of the product development process and overall life cycle. Using carbon nanotubes as a case study, a workshop bringing together national and international leaders from government, industry, and academia was convened at the University of California, Los Angeles to discuss the utility of ATS for decision-making analyses of ENMs. After lively discussions, a short list of generally shared viewpoints on this topic was generated, including a general view that ATS approaches for ENMs can significantly benefit chemical safety analysis.
BASE