International audience ; In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent Euro-pean Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
International audience ; In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent Euro-pean Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
International audience ; In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent Euro-pean Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
International audience ; In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent Euro-pean Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
Marine protected areas (MPAs) represent the main tool for halting the loss of marine biodiversity. However, there is increasing evidence concerning their limited capacity to reduce or eliminate some threats even within their own boundaries. Here, we analysed a Europe-wide dataset comprising 31,579 threats recorded in 1692 sites of the European Union's Natura 2000 conservation network. Focusing specifically on threats related to marine species and habitats, we found that fishing and outdoor activities were the most widespread threats reported within MPA boundaries, although some spatial heterogeneity in the distribution of threats was apparent. Our results clearly demonstrate the need to reconsider current management plans, standardise monitoring approaches and reporting, refine present threat assessments and improve knowledge of their spatial patterns within and outside MPAs in order to improve conservation capacity and outcomes.
14 pages, 5 figures, supporting information https://doi.org/10.1002/eap.2009 ; In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast-moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth ; This article is based upon ideas developed in two workshops in Naples in November 2017 and November 2018 organized as part of the COST Action 15121 'Advancing marine conservation in the European and contiguous seas (MarCons; www.marcons-cost.eu; Katsanevakis et al. 2017) supported by COST (European Cooperation in Science and Technology, CA15121). It is also partly supported by an Israel Science Foundation grant to GR (grant no. 1982/16)
In the Anthropocene, marine ecosystems are rapidly shifting to new ecological states. Achieving effective conservation of marine biodiversity has become a fast‐moving target because of both global climate change and continuous shifts in marine policies. How prepared are we to deal with this crisis? We examined EU Member States Programs of Measures designed for the implementation of EU marine environmental policies, as well as recent European Marine Spatial Plans, and discovered that climate change is rarely considered operationally. Further, our analysis revealed that monitoring programs in marine protected areas are often insufficient to clearly distinguish between impacts of local and global stressors. Finally, we suggest that while the novel global Blue Growth approach may jeopardize previous marine conservation efforts, it can also provide new conservation opportunities. Adaptive management is the way forward (e.g., preserving ecosystem functions in climate change hotspots, and identifying and targeting climate refugia areas for protection) using Marine Spatial Planning as a framework for action, especially given the push for Blue Growth.
Aim: Marine bioconstructions such as coralligenous formations are hotspot of biodi‐ versity and play a relevant ecological role in the preservation of biodiversity by provid‐ ing carbon regulation, protection and nursery areas for several marine species. For this reason, the European Union Habitat Directive included them among priority habitats to be preserved. Although their ecological role is well established, connectivity pat‐ terns are still poorly investigated, representing a limit in conservation planning. The present study pioneers a novel approach for the analysis of connectivity in marine bioconstructor species, which often lack suitable genetic markers, by taking advantage of next‐generation sequencing techniques. We assess the geographical patterns of genomic variation of the sunset cup coral Leptopsammia pruvoti Lacaze‐Duthiers, 1897, an ahermatypic, non‐zooxanthellate and solitary scleractinian coral species common in coralligenous habitats and distributed across the Mediterranean Sea. Location: The Italian coastline (Western and Central Mediterranean). Methods: We applied the restriction site‐associated 2b‐RAD approach to genotype over 1,000 high‐quality and filtered single nucleotide polymorphisms in 10 population samples. Results: The results revealed the existence of a strongly supported genetic structure, with highly significant pairwise FST values between all the population samples, includ‐ ing those collected about 5 km apart from each other. Moreover, genomic data indi‐ cate that the strongest barriers to gene flow are between the western (Ligurian–Tyrrhenian Sea) and the eastern side (Adriatic Sea) of the Italian peninsula. Main conclusions: The strong differentiation found in L. pruvoti is similar to that found in other species of marine bioconstructors investigated in this area, but it strongly contrasts with the small differences found in many fish and invertebrates at the same geographical scale. All in one, our results highlight the importance of assessing con‐ nectivity in species belonging to coralligenous habitats as, due to their limited disper‐ sal ability, they might require specific spatial conservation measures.
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. ; European Research Council; EU [AdG-250189, PoC-727440, ERC-SyG-2013-610028]; Natural Environmental Research Council [NE/L002531/1]; National Science Foundation [DEB-1237733, DEB-1456729, 9714103, 0632263, 0856516, 1432277, DEB 9705814, BSR-8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB-1546686, DEB-129764]; National Science Foundation (LTER) [DEB-1235828, DEB-1440297, DBI-0620409, DEB-9910514, DEB-1237517, OCE-0417412, OCE-1026851, OCE-1236905, OCE-1637396, DEB 1440409, DEB-0832652, DEB-0936498, DEB-0620652, DEB-1234162, DEB-0823293, OCE-9982105, OCE-0620276, OCE-1232779]; Fundacao para a Ciencia e Tecnologia [POPH/FSE SFRH/BD/90469/2012, SFRH/BD/84030/2012, PTDC/BIA-BIC/111184/2009]; Ciencia sem Fronteiras/CAPES [1091/13-1]; Instituto Milenio de Oceanografia [IC120019]; ARC Centre of Excellence [CE0561432]; NSERC Canada; CONICYT/FONDECYT [1160026, ICM PO5-002, 11110351, 1151094, 1070808, 1130511]; RSF [14-50-00029]; Gordon and Betty Moore Foundation [GBMF4563]; Catalan Government; Marie Curie Individual Fellowship [QLK5-CT2002-51518, MERG-CT-2004-022065]; CNPq [306170/2015-9, 475434/2010-2, 403809/2012-6, 561897/2010, 306595-2014-1]; FAPESP (Sao Paulo Research Foundation) [2015/10714-6, 2015/06743-0, 2008/10049-9, 2013/50714-0, 1999/09635-0 e 2013/50718-5]; EU CLIMOOR [ENV4-CT97-0694]; VULCAN [EVK2-CT2000-00094]; DFG [120/10-2]; Polar Continental Shelf Program; CENPES - PETROBRAS; FAPERJ [E-26/110.114/ 2013]; German Academic Exchange Service; New Zealand Department of Conservation; Wellcome Trust [105621/Z/14/Z]; Smithsonian Atherton Seidell Fund; Botanic Gardens and Parks Authority; Research Council of Norway; Conselleria de Innovacio, Hisenda i Economia; Yukon Government Herschel Island-Qikiqtaruk Territorial Park; UK Natural Environment Research Council ShrubTundra Grant [NE/M016323/1]; IPY; Memorial University; ArcticNet; Netherlands Organization for Scientific Research in the Tropics NWO [W84-194]; Ciencias sem Fronteiras and Coordenacao de Pessoal de Nivel Superior (CAPES, Brazil) [1091/13-1]; U.S. Fish and Wildlife Service/State Wildlife federal grant [T-15]; Australian Research Council Centre of Excellence for Coral Reef Studies [CE140100020]; Australian Research Council Future Fellowship [FT110100609]; University of Lodz; NSF DEB [1353139]; Catalan Government fellowships (DURSI) [1998FI-00596, 2001BEAI200208]; MECD Post-doctoral fellowship [EX2002-0022]; FONDECYT [1141037]; FONDAP [15150003]; [SFRH/BD/80488/2011]; [PD/BD/52597/2014]; [REN2000-0278/CCI]; [REN2001-003/GLO]; [CGL2016-79835-P]; [AGAUR SGR-2014453]; [SGR-2017-1005]; [FCT - SFRH / BPD / 82259 / 2011]; [OCE 95-21184]; [OCE-0099226]; [OCE 03-5234]; [OCE-0623874]; [OCE-1031061]; [OCE-1336206]; [DEB-1354563]; [OPP-1440435] ; 12 month embargo; published online: 24 July 2018 ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
European Research Council and EU, Grant/Award Number: AdG‐250189, PoC‐727440 and ERC‐SyG‐2013‐610028; Natural Environmental Research Council, Grant/Award Number: NE/L002531/1; National Science Foundation, Grant/Award Number: DEB‐1237733, DEB‐1456729, 9714103, 0632263, 0856516, 1432277, DEB‐9705814, BSR‐8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB‐1546686, DEB‐129764, OCE 95‐21184, OCE‐ 0099226, OCE 03‐52343, OCE‐0623874, OCE‐1031061, OCE‐1336206 and DEB‐1354563; National Science Foundation (LTER) , Grant/Award Number: DEB‐1235828, DEB‐1440297, DBI‐0620409, DEB‐9910514, DEB‐1237517, OCE‐0417412, OCE‐1026851, OCE‐1236905, OCE‐1637396, DEB 1440409, DEB‐0832652, DEB‐0936498, DEB‐0620652, DEB‐1234162 and DEB‐0823293; Fundação para a Ciência e Tecnologia, Grant/Award Number: POPH/FSE SFRH/BD/90469/2012, SFRH/BD/84030/2012, PTDC/BIA‐BIC/111184/2009; SFRH/BD/80488/2011 and PD/BD/52597/2014; Ciência sem Fronteiras/CAPES, Grant/Award Number: 1091/13‐1; Instituto Milenio de Oceanografía, Grant/Award Number: IC120019; ARC Centre of Excellence, Grant/Award Number: CE0561432; NSERC Canada; CONICYT/FONDECYT, Grant/Award Number: 1160026, ICM PO5‐002, CONICYT/FONDECYT, 11110351, 1151094, 1070808 and 1130511; RSF, Grant/Award Number: 14‐50‐00029; Gordon and Betty Moore Foundation, Grant/Award Number: GBMF4563; Catalan Government; Marie Curie Individual Fellowship, Grant/Award Number: QLK5‐CT2002‐51518 and MERG‐CT‐2004‐022065; CNPq, Grant/Award Number: 306170/2015‐9, 475434/2010‐2, 403809/2012‐6 and 561897/2010; FAPESP (São Paulo Research Foundation), Grant/Award Number: 2015/10714‐6, 2015/06743‐0, 2008/10049‐9, 2013/50714‐0 and 1999/09635‐0 e 2013/50718‐5; EU CLIMOOR, Grant/Award Number: ENV4‐CT97‐0694; VULCAN, Grant/Award Number: EVK2‐CT‐2000‐00094; Spanish, Grant/Award Number: REN2000‐0278/CCI, REN2001‐003/GLO and CGL2016‐79835‐P; Catalan, Grant/Award Number: AGAUR SGR‐2014‐453 and SGR‐2017‐1005; DFG, Grant/Award Number: 120/10‐2; Polar Continental Shelf Program; CENPES – PETROBRAS; FAPERJ, Grant/Award Number: E‐26/110.114/2013; German Academic Exchange Service; sDiv; iDiv; New Zealand Department of Conservation; Wellcome Trust, Grant/Award Number: 105621/Z/14/Z; Smithsonian Atherton Seidell Fund; Botanic Gardens and Parks Authority; Research Council of Norway; Conselleria de Innovació, Hisenda i Economia; Yukon Government Herschel Island‐Qikiqtaruk Territorial Park; UK Natural Environment Research Council ShrubTundra Grant, Grant/Award Number: NE/M016323/1; IPY; Memorial University; ArcticNet. DOI:10.13039/50110000027. Netherlands Organization for Scientific Research in the Tropics NWO, grant W84‐194. Ciências sem Fronteiras and Coordenação de Pessoal de Nível Superior (CAPES, Brazil), Grant/Award Number: 1091/13‐1. National Science foundation (LTER), Award Number: OCE‐9982105, OCE‐0620276, OCE‐1232779. FCT ‐ SFRH / BPD / 82259 / 2011. U.S. Fish and Wildlife Service/State Wildlife federal grant number T‐15. Australian Research Council Centre of Excellence for Coral Reef Studies (CE140100020). Australian Research Council Future Fellowship FT110100609. M.B., A.J., K.P., J.S. received financial support from internal funds of University of Lódź. NSF DEB 1353139. Catalan Government fellowships (DURSI): 1998FI‐00596, 2001BEAI200208, MECD Post‐doctoral fellowship EX2002‐0022. National Science Foundation Award OPP‐1440435. FONDECYT 1141037 and FONDAP 15150003 (IDEAL). CNPq Grant 306595‐2014‐1 ; Peer reviewed ; Publisher PDF
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness. ; The Canada Research Chairs program provided funding for the core writing team. Field research funding was provided by A.G. Leventis Foundation; Agence Nationale de la Recherche, [grant number ANR-18-32–0010CE-01 (JCJC PEPPER)]; Agencia Estatal de Investigaci; Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), [grant number M1420-09-5369-FSE-000002]; Alan Peterson; ArcticNet; Arkadaşlar; Army Corp of Engineers; Artificial Reef Program; Australia's Integrated Marine Observing System (IMOS), National Collaborative; Research Infrastructure Strategy (NCRIS), University of Tasmania; Australian Institute of Marine Science; Australian Research Council, [grant number LP140100222]; Bai Xian Asia Institute; Batubay Özkan; BC Hydro Fish and Wildlife Compensation Program; Ben-Gurion University of the Negev; Bertarelli Foundation; Bertarelli Programme in Marine Science; Bilge Bahar; Bill and Melinda Gates Foundation; Biology Society of South Australia; Boston University; Burak Över; California State Assembly member Patrick O'Donnell; California State University Council on Ocean Affairs, Science & Technology; California State University Long Beach; Canada Foundation for Innovation (Major Science Initiative Fund and funding to Oceans Network Canada), [grant number MSI 30199 for ONC]; Cape Eleuthera Foundation; Centre National d'Etudes Spatiales; Centre National de la Recherche Scientifique; Charles Darwin Foundation, [grant number 2398]; Colombian Institute for the Development of Science and Technology (COLCIENCIAS), [grant number 811–2018]; Colombian Ministry of Environment and Sustainable Development, [grant number 0041–2020]; Columbia Basin Trust; Commission for Environmental Cooperation; Cornell Lab of Ornithology; Cultural practices and environmental certification of beaches, Universidad de la Costa, Colombia, [grant number INV.1106–01–002-15, 2020–21]; Department of Conservation New Zealand; Direction de l'Environnement de Polynésie Française; Disney Conservation Fund; DSI-NRF Centre of; Excellence at the FitzPatrick Institute of African Ornithology; Ecology Project International; Emin Özgür; Environment and Climate Change Canada; European Community: RTD programme - Species Support to Policies; European Community's Seventh Framework Programme; European Union; European Union's Horizon 2020 research and innovation programme, Marie Skłodowska-Curie, [grant number 798091, 794938]; Faruk Eczacıbaşı; Faruk Yalçın Zoo; Field research funding was provided by King Abdullah University of Science and Technology; Fish and Wildlife Compensation Program; Fisheries and Oceans Canada; Florida Fish and Wildlife Conservation Commission, [grant numbers FWC-12164, FWC-14026, FWC-19050]; Fondo Europeo de Desarrollo Regional; Fonds québécois de la recherche nature et technologies; Foundation Segré; Fundação para a Ciência e a Tecnologia (FCT Portugal); Galapagos National Park Directorate research, [grant number PC-41-20]; Gordon and Betty Moore Foundation, [grant number GBMF9881 and GBMF 8072]; Government of Tristan da Cunha; Habitat; Conservation Trust Foundation; Holsworth Wildlife Research Endowment; Institute of Biology of the Southern Seas, Sevastopol, Russia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; Instituto Nacional de Pesquisas Espaciais (INPE), Brazil; Israeli Academy of Science's Adams Fellowship; King Family Trust; Labex, CORAIL, France; Liber Ero Fellowship; LIFE (European Union), [grant number LIFE16 NAT/BG/000874]; Mar'a de Maeztu Program for Units of Excellence in R&D; Ministry of Science and Innovation, FEDER, SPASIMM,; Spain, [grant number FIS2016–80067-P (AEI/FEDER, UE)]; MOE-Korea, [grant number 2020002990006]; Mohamed bin Zayed Species Conservation Fund; Montreal Space for Life; National Aeronautics and Space Administration (NASA) Earth and Space Science Fellowship Program; National Geographic Society, [grant numbers NGS-82515R-20]; National Natural Science Fund of China; National Oceanic and Atmospheric Administration; National Parks Board, Singapore; National Science and Technology Major Project of China; National Science Foundation, [grant number DEB-1832016]; Natural Environment Research Council of the UK; Natural Sciences and Engineering Research Council of Canada (NSERC), Alliance COVID-19 grant program, [grant numbers ALLRP 550721–20, RGPIN-2014-06229 (year: 2014), RGPIN-2016-05772 (year: 2016)]; Neiser Foundation; Nekton Foundation; Network of Centre of Excellence of Canada: ArcticNet; North Family Foundation; Ocean Tracking Network; Ömer Külahçıoğlu; Oregon State University; Parks Canada Agency (Lake Louise, Yoho, and Kootenay Field Unit); Pew Charitable Trusts; Porsim Kanaf partnership; President's International Fellowship Initiative for postdoctoral researchers Chinese Academy of Sciences, [grant number 2019 PB0143]; Red Sea Research Center; Regional Government of the Azores, [grant number M3.1a/F/025/2015]; Regione Toscana; Rotary Club of Rhinebeck; Save our Seas Foundation; Science & Technology (CSU COAST); Science City Davos, Naturforschende Gesellschaft Davos; Seha İşmen; Sentinelle Nord program from the Canada First Research Excellence Fund; Servizio Foreste e Fauna (Provincia Autonoma di Trento); Sigrid Rausing Trust; Simon Fraser University; Sitka Foundation; Sivil Toplum Geliştirme Merkezi Derneği; South African National Parks (SANParks); South Australian Department for Environment and Water; Southern California Tuna Club (SCTC); Spanish Ministry for the Ecological Transition and the Demographic Challenge; Spanish Ministry of Economy and Competitiveness; Spanish Ministry of Science and Innovation; State of California; Sternlicht Family Foundation; Suna Reyent; Sunshine Coast Regional Council; Tarea Vida, CEMZOC, Universidad de Oriente, Cuba, [grant number 10523, 2020]; Teck Coal; The Hamilton Waterfront Trust; The Ian Potter Foundation, Coastwest, Western Australian State NRM; The Red Sea Development Company; The Wanderlust Fund; The Whitley Fund; Trans-Anatolian Natural Gas Pipeline; Tula Foundation (Hakai Institute); University of Arizona; University of Pisa; US Fish and Wildlife Service; US Geological Survey; Valencian Regional Government; Vermont Center for Ecostudies; Victorian Fisheries Authority; VMRC Fishing License Fund; and Wildlife Warriors Worldwide.