With numerous endemic subspecies representing four of its five evolutionary lineages, Europe holds a large fraction of Apis mellifera genetic diversity. This diversity and the natural distribution range have been altered by anthropogenic factors. The conservation of this natural heritage relies on the availability of accurate tools for subspecies diagnosis. Based on pool-sequence data from 2145 worker bees representing 22 populations sampled across Europe, we employed two highly discriminative approaches (PCA and FST) to select the most informative SNPs for ancestry inference. Results: Using a supervised machine learning (ML) approach and a set of 3896 genotyped individuals, we could show that the 4094 selected single nucleotide polymorphisms (SNPs) provide an accurate prediction of ancestry inference in European honey bees. The best ML model was Linear Support Vector Classifier (Linear SVC) which correctly assigned most individuals to one of the 14 subspecies or different genetic origins with a mean accuracy of 96.2% ± 0.8 SD. A total of 3.8% of test individuals were misclassified, most probably due to limited differentiation between the subspecies caused by close geographical proximity, or human interference of genetic integrity of reference subspecies, or a combination thereof. Conclusions: The diagnostic tool presented here will contribute to a sustainable conservation and support breeding activities in order to preserve the genetic heritage of European honey bees. ; The SmartBees project was funded by the European Commission under its FP7 KBBE programme (2013.1.3–02, SmartBees Grant Agreement number 613960) https://ec.europa.eu/research/fp7. MP was supported by a Basque Government grant (IT1233–19). The funders provided the financial support to the research, but had no role in the design of the study, analysis, interpretations of data and in writing the manuscript. ; info:eu-repo/semantics/publishedVersion
We report here the genome sequence of an ancient human. Obtained from ∼4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20×, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit. ; Centre for Geogenetics, the Copenhagen branch of the Sino-Danish Genomic Centre and Wilhelm Johannsen Centre for Functional Genome Research were supported by Danish National Research Foundation, the Lundbeck Foundation, and the Danish Agency for Science, Technology and Innovation. Center for Biological Sequence Analysis was supported by Villum Kann Rasmussen Fonden; Center for Protein Reseaerch by the Novo Nordisk Foundation. E.W. thanks F. Paulsen for financial support to initiate the project. E.M. thanks Estonian Science Foundation for grant 7858, and R.V. EC DGR for FP7 Ecogene grant 205419 and EU RDF through Centre of Excellence in Genomics grant. J.W. thanks the Shenzhen Municipal Government, the Yantian District local government of Shenzhen, the National Natural Science Foundation of China (30725008), Ole Romer grant from the Danish Natural Science Research Council, the Solexa project (272-07-0196), and Danish Strategic Research Council (2106-07-0021). M.Bu. acknowledges the support of the ...
peer-reviewed ; H.D.D., A.J.C., P.J.B. and B.J.H. would like to acknowledge the Dairy Futures Cooperative Research Centre for funding. H.P. and R.F. acknowledge funding from the German Federal Ministry of Education and Research (BMBF) within the AgroClustEr 'Synbreed—Synergistic Plant and Animal Breeding' (grant 0315527B). H.P., R.F., R.E. and K.-U.G. acknowledge the Arbeitsgemeinschaft Süddeutscher Rinderzüchter, the Arbeitsgemeinschaft Österreichischer Fleckviehzüchter and ZuchtData EDV Dienstleistungen for providing genotype data. A. Bagnato acknowledges the European Union (EU) Collaborative Project LowInputBreeds (grant agreement 222623) for providing Brown Swiss genotypes. Braunvieh Schweiz is acknowledged for providing Brown Swiss phenotypes. H.P. and R.F. acknowledge the German Holstein Association (DHV) and the Confederación de Asociaciones de Frisona Española (CONCAFE) for sharing genotype data. H.P. was financially supported by a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (DFG) (grant PA 2789/1-1). D.B. and D.C.P. acknowledge funding from the Research Stimulus Fund (11/S/112) and Science Foundation Ireland (14/IA/2576). M.S. and F.S.S. acknowledge the Canadian Dairy Network (CDN) for providing the Holstein genotypes. P.S. acknowledges funding from the Genome Canada project entitled 'Whole Genome Selection through Genome Wide Imputation in Beef Cattle' and acknowledges WestGrid and Compute/Calcul Canada for providing computing resources. J.F.T. was supported by the National Institute of Food and Agriculture, US Department of Agriculture, under awards 2013-68004-20364 and 2015-67015-23183. A. Bagnato, F.P., M.D. and J.W. acknowledge EU Collaborative Project Quantomics (grant 516 agreement 222664) for providing Brown Swiss and Finnish Ayrshire sequences and genotypes. A.C.B. and R.F.V. acknowledge funding from the public–private partnership 'Breed4Food' (code BO-22.04-011- 001-ASG-LR) and EU FP7 IRSES SEQSEL (grant 317697). A.C.B. and R.F.V. acknowledge CRV (Arnhem, the Netherlands) for providing data on Dutch and New Zealand Holstein and Jersey bulls. ; Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.