Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens
Este artículo contiene 11 páginas, 4 figuras, 1 tabla. ; A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens' data to address the fast- and vastdispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5–39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play. ; This study was financed by the special action project "NACRAS – Evaluación de la magnitud de un evento de mortalidad combinando censos científicos ampliados con observaciones de ciencia ciudadana" cofunded by the Regional Government and Direcció General d'Innovació i Recerca of the Balearic Islands and the European Social Fund 2014–2020. Salinity and temperature data at Alfacs Bay was provided from the "Programa de Seguimiento de la calidad de las aguas, moluscos y fitoplancton tóxico en las zonas de producción de marisco del litoral catalán (PSQAM) de la DGPAM." The authors acknowledge the MEDCLIC project, funded by "La Caixa" Foundation, contributing to the development of the WMOP hydrodynamic model. Maite Vázquez- Luis and Miguel Cabanellas-Reboredo were supported by a postdoctoral contract co-funded by the Regional Government of the Balearic Islands and the European Social Fund 2014–2020. Also, Vázquez-Luis was also supported by a postdoctoral contract Juan de la Cierva-Incorporación (IJCI-2016-29329) of Ministerio de Ciencia, Innovación y Universidades. Elvira Álvarez was supported by a Personal Técnico de Apoyo contract (PTA2015-10829-I) funded by the Spanish Ministry of Economy and Competiveness. Iris E. Hendriks was supported by Ramon y Cajal Fellowship RYC-2014-14970, cofunded by the Conselleria d'Innovació, Recerca i Turisme of the Balearic Government (Pla de ciència, tecnologia, innovació i emprenedoria 2013-2017) and the Spanish Ministry of Economy, Industry and Competitiveness. Jose Rafael Garcia-March and Jose Tena were supported by the project BF/HEM 15-1662 ; Peer reviewed