Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis
Enzyme engineering has allowed not only the de novo creation of active sites catalysing known biological reactions with rates close to diffusion limits, but also the generation of abiological sites performing new-to-nature reactions. However, the catalytic advantages of engineering multiple active sites into a single protein scaffold are yet to be established. Here, we report on proteins with two active sites of biological and/or abiological origin, for improved natural and non-natural catalysis. The approach increased the catalytic properties, such as enzyme efficiency, substrate scope, stereoselectivity and optimal temperature window, of an esterase containing two biological sites. Then, one of the active sites was metamorphosed into a metal-complex chemocatalytic site for oxidation and Friedel–Crafts alkylation reactions, facilitating synergistic chemo- and biocatalysis in a single protein. The transformations of 1-naphthyl acetate into 1,4-naphthoquinone (conversion approx. 100%) and vinyl crotonate and benzene into 3-phenylbutyric acid (≥83%; e.e. >99.9%) were achieved in one pot with this artificial multifunctional metalloenzyme. ; This work was funded by grant 'INMARE' from the European Union's Horizon 2020 (grant agreement no. 634486), grants PCIN-2017-078 (within the Marine Biotechnology ERA-NET), CTQ2016-79138-R, BIO2016-76601-C3-1-R, BIO2016-76601-C3-3-R, BIO2017-85522-R, RTI2018-095166-B-I00 and RTI2018-095090-B-100 from the Ministerio de Economía y Competitividad, the Ministerio de Ciencia, Innovación y Universidades (MCIU), the Agencia Estatal de Investigación (AEI), the Fondo Europeo de Desarrollo Regional (FEDER) and the European Union (EU). P.N.G. and R.B. acknowledge the support of the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant No. BB/M029085/1) and the Centre of Environmental Biotechnology Project and the Supercomputing Wales project, which are partly funded by the European Regional Development Fund (ERDF) through the Welsh Government. The authors gratefully acknowledge the financial support provided by the ERDF. C.C. thanks the Ministerio de Economía y Competitividad and FEDER for a Ph.D. fellowship (Grant BES-2015-073829). J.L.G.-A. thanks the support of the Spanish Ministry of Education, Culture and Sport through the National Program FPU (FPU17/00044). I.C.-R. thanks the Regional Government of Madrid for a fellowship (PEJ_BIO_AI_1201). The authors would like to acknowledge S. Ciordia and M. C. Mena for MALDI-TOF/TOF analysis. We thank the staff of both the European Synchrotron Radiation Facility (ESRF, Grenoble, France), for providing access and technical assistance at beamline ID30A-1/MASSIf-1, and the Synchrotron Radiation Source at Alba (Barcelona, Spain), for assistance at BL13-XALOC beamline. The authors would also like to acknowledge M. J. Vicente and M. A. Pascual at the Servicio Interdepartamental de Investigación (SIDI) of the Autonomous University of Madrid for the ESI-MS analyses.