Current food production and consumption trends are inconsistent with the Convention on Biological Diversity's 2050 vision of living in harmony with nature. Here, we examine how, and under what conditions, the post-2020 biodiversity framework can support transformative change in food systems. Our analysis of actions proposed in four science-policy fora reveals that subsidy reform, valuation, food waste reduction, sustainability standards, life cycle assessments, sustainable diets, mainstreaming biodiversity, and strengthening governance can support more sustainable food production and consumption. By considering barriers and opportunities of implementing these actions in Peru and the United Kingdom, we derive potential targets and indicators for the post-2020 biodiversity framework. For targets to support transformation, genuine political commitment, accountability and compliance, and wider enabling conditions and actions by diverse agents are needed to shift food systems onto a sustainable path.
Decisions on the use of nature reflect the values and rights of individuals, communities and society at large. The values of nature are expressed through cultural norms, rules and legislation, and they can be elicited using a wide range of tools, including those of economics. None of the approaches to elicit peoples' values are neutral. Unequal power relations influence valuation and decision-making and are at the core of most environmental conflicts. As actors in sustainability thinking, environmental scientists and practitioners are becoming more aware of their own posture, normative stance, responsibility and relative power in society. Based on a transdisciplinary workshop, our perspective paper provides a normative basis for this new community of scientists and practitioners engaged in the plural valuation of nature.
This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714977115/-/DCSupplemental. ; Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. ; European Union's Horizon 2020 Research and Innovation Programme under Marie Skłodowska-Curie Grant Agreement 660020, Instituto Bem Ambiental (IBAM), Myr Projetos Sustentáveis, IEF, and CNPq, CAPES FAPEMIG, German Research Foundation (DFG; Grants CRC 552, CU127/3-1, HO 3296/2-2, HO3296/4-1, and RU 816), UNAM-PAPIIT IN218416 and Semarnat-CONACYT 128136, Conselho Nacional de Desenvolvimento Científico e Tecnoloógico (CNPq, Brazil), Fundação Grupo Boticário de Proteção à Natureza/Brazil, PAPIIT-DGAPA-UNAM (Project IN-204215), National Geographic Society, National Foundation for Scientific and Technology Development Vietnam (Grant 106.11-2010.68), Operation Wallacea, and core funding for Crown Research Institutes from the New Zealand Ministry of Business, Innovation and Employment's Science and Innovation Group. ; Peer-reviewed ; Publisher Version