The recent spreading of African swine fever (ASF) over the Eurasian continent has been acknowledged as a serious economic threat for the pork industry. Consequently, an extensive body of research focuses on the epidemiology and control of ASF. Nevertheless, little information is available on the combined effect of ASF and ASF-related control measures on wild boar (Sus scrofa) population abundances. This is crucial information given the role of the remaining wild boar that act as an important reservoir of the disease. Given the high potential of camera traps as a non-invasive method for ungulate trend estimation, we assess the effectiveness of ASF control measures using a camera trap network. In this study, we focus on a major ASF outbreak in 2018-2020 in the South of Belgium. This outbreak elicited a strong management response, both in terms of fencing off a large infected zone as well as an intensive culling regime. We apply a Bayesian multi-season site-occupancy model to wild boar detection/non-detection data. Our results show that (1) occupancy rates at the onset of our monitoring period reflect the ASF infection status; (2) ASF-induced mortality and culling efforts jointly lead to decreased occupancy over time; and (3) the estimated mean total extinction rate ranges between 22.44 and 91.35%, depending on the ASF infection status. Together, these results confirm the effectiveness of ASF control measures implemented in Wallonia (Belgium), which has regained its disease-free status in December 2020, as well as the usefulness of a camera trap network to monitor these effects. ; BOF-mandate (UHasselt) Research Foundation-Flanders (FWO) (grant number 11E3220N) Public Service of Wallonia Flemish Supercomputer Center (VSC) and the Flemish Government Wallonia-Brussels Federation
Despite great advances, experiments concerning the response of ecosystems to climate change still face considerable challenges, including the high complexity of climate change in terms of environmental variables, constraints in the number and amplitude of climate treatment levels, and the limited scope of responses and interactions covered. Drawing on the expertise of researchers from a variety of disciplines, this Perspective outlines how computational and technological advances can help in designing experiments that can contribute to overcoming these challenges, and also outlines a first application of such an experimental design. ; We thank the Flemish government (through Hercules Stichting big infrastructure and the Fund for Scientific Research Flanders project G0H4117N) and LSM (Limburg Sterk Merk, project 271) for providing funds to build the UHasselt Ecotron; Hasselt University for both funding and policy support (project BOF12BR01 and Methusalem project 08M03VGRJ); and the ecotron research committee for comments on the experimental design. We also thank Regional Landscape Kempen and Maasland for its collaboration and support. N.W., S.L., A.N. and I.V. are funded by Research Foundation-Flanders (FWO).
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa. ; Y We are grateful to the ILTER network and the eLTER PLUS project (Grand Agreement No. 871128) for financial support. We acknowledge the E-OBS dataset from the EUFP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).The evaluation of forest plant diversity was based on data collected by partners of the official UNECE ICP Forests Network (http://icp-forests.net/contributors); part of the data were co-financed by the European Commission, project LIFE 07 ENV/D/000218 "Further Development and Implementation of an EU-level Forest monitoring Systeme (FutMon)". Data on wintering water birds in Bulgaria were provided by the national Executive Environment Agency with the Ministry of Environment and Waters. Data from the Finnish moth monitoring scheme were supported by the Finnish Ministry of the Environment. Data from the Swedish ICP Integrated Monitoring sites were financed by the Swedish Environmental Protection Agency. Data collection at Esthwaite Water and a subset of UK ECN sites was supported by Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCaPE programme delivering National Capability. Sponsorship of other UK ECN sites contributing data was provided by Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Department of Environment Food and Rural Affairs, Natural Resources Wales, Defense Science Technology Laboratory, Environment Agency, Forestry Commission, Forest Research, the James Hutton Institute (The Rural & Environment Science & Analytical Services Division of the Scottish Government), Natural England, Rothamsted Research, Scottish Government, Scottish Natural Heritage and the Welsh Government. Data from the Mondego estuary (Portugal) were supported by the Centre for Functional Ecology Strategic Project (UID/BIA/04004/2019) within the PT2020 Partnership Agreement and COMPETE 2020, and by FEDER through the project ReNATURE (Centro 2020, Centro-01-765-0145-FEDER-000007). We would like to thank Limburgse Koepel voor Natuurstudie (LiKoNa) for the data related to the National Park Hoge Kempen (BE). We would like to acknowledge the support for the long-term monitoring program MONEOS in the Scheldt estuary (BE) by `De Vlaamse Waterweg' and `Maritieme Toegang' (Flemish government). We are grateful to the board of the National Park "De Hoge Veluwe" for the permission to conduct our research on their property. We thank Ian J. Winfield and Terje Bongard for contributing data for the sites: Bassenthwaite Lake, Derwent Water (UK) and Atna River (Norway, freshwater invertebrate time series). Open access funding provided by Umea University. ; Pilotto, F; Haase, P (corresponding author), Senckenberg Res Inst, Gelnhausen, Germany; Nat Hist Museum, Gelnhausen, Germany; Univ Duisburg Essen, Essen, Germany. francesca.pilotto@umu.se; francesca.pilotto@umu.se
Este artículo contiene 11 páginas, 2 tablas, 4 figuras. ; Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. ; We are grateful to the ILTER network and the eLTER PLUS project (Grand Agreement No. 871128) for financial support. We acknowledge the E-OBS dataset from the EUFP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). The evaluation of forest plant diversity was based on data collected by partners of the official UNECE ICP Forests Network (http://icp-forests.net/contributors); part of the data were co-financed by the European Commission, project LIFE 07 ENV/D/000218 "Further Development and Implementation of an EU-level Forest monitoring Systeme (FutMon)". Data on wintering water birds in Bulgaria were provided by the national Executive Environment Agency with the Ministry of Environment and Waters. Data from the Finnish moth monitoring scheme were supported by the Finnish Ministry of the Environment. Data from the Swedish ICP Integrated Monitoring sites were financed by the Swedish Environmental Protection Agency. Data collection at Esthwaite Water and a subset of UK ECN sites was supported by Natural Environment Research Council award number NE/ R016429/1 as part of the UK-SCaPE programme delivering National Capability. Sponsorship of other UK ECN sites contributing data was provided by Agri-Food and Biosciences Institute, Biotechnology and Biological Sciences Research Council, Department of Environment Food and Rural Affairs, Natural Resources Wales, Defense Science Technology Laboratory, Environment Agency, Forestry Commission, Forest Research, the James Hutton Institute (The Rural & Environment Science & Analytical Services Division of the Scottish Government), Natural England, Rothamsted Research, Scottish Government, Scottish Natural Heritage and the Welsh Government. Data from the Mondego estuary (Portugal) were supported by the Centre for Functional Ecology Strategic Project (UID/BIA/04004/2019) within the PT2020 Partnership Agreement and COMPETE 2020, and by FEDER through the project ReNATURE (Centro 2020, Centro-01-765-0145-FEDER-000007). We would like to thank Limburgse Koepel voor Natuurstudie (LiKoNa) for the data related to the National Park Hoge Kempen (BE). We would like to acknowledge the support for the long-term monitoring program MONEOS in the Scheldt estuary (BE) by 'De Vlaamse Waterweg' and 'Maritieme Toegang' (Flemish government). We are grateful to the board of the National Park "De Hoge Veluwe" for the permission to conduct our research on their property. We thank Ian J. Winfield and Terje Bongard for contributing data for the sites: Bassenthwaite Lake, Derwent Water (UK) and Atna River (Norway, freshwater invertebrate time series). Open access funding provided by Umeå University. ; Peer reviewed