Death by suicide and suicidal behavior are major concerns among U.S. military veterans; however, no genome-wide association studies (GWAS) studies of suicidal behavior have been conducted among U.S. military veterans to date, despite the elevated rate of suicidal behavior observed within this population. Accordingly, the primary objective of the present research was to conduct the first GWAS of suicide attempts and suicidal ideation in a large and well-characterized sample of U.S. military veterans. The gene most significantly associated (p=9.28×10(−7)) with suicide attempts was the Potassium Calcium-Activated Channel Subfamily M Regulatory Beta Subunit 2 (KCNMB2) gene, which plays a key role in neuronal excitability. In addition, replication analyses provided additional support for the potential role of the ABI Family Member 3 Binding Protein (ABI3BP) gene in the pathogenesis of suicidal behavior, as numerous nominal associations were found between this gene and both suicide attempts and suicidal ideation. Additional work aimed at replicating and extending these findings is needed.
Depending on the traumatic event, a significant fraction of trauma survivors subsequently develop PTSD. The additional variability in PTSD risk is expected to arise from genetic susceptibility. Unfortunately, several genome-wide association studies (GWAS) have failed to identify a consistent genetic marker for PTSD. The heritability of intermediate phenotypes such as regional brain volumes is often 80% or higher. We conducted a GWAS of subcortical brain volumes in a sample of recent military veteran trauma survivors (n = 157), grouped into PTSD (n = 66) and non-PTSD controls (n = 91). Covariates included PTSD diagnosis, sex, intracranial volume, ancestry, childhood trauma, SNP×PTSD diagnosis, and SNP×childhood trauma. We identified several genetic markers in high linkage disequilibrium (LD) with rs9373240 (p = 2.0 × 10−7, FDR q = 0.0375) that were associated with caudate volume. We also observed a significant interaction between rs9373240 and childhood trauma (p-values = 0.0007–0.002), whereby increased trauma exposure produced a stronger association between SNPs and increased caudate volume. We identified several SNPs in high LD with rs34043524, which is downstream of the TRAM1L1 gene that were associated with right lateral ventricular volume (p = 1.73 × 10−7; FDR q = 0.032) and were also associated with lifetime alcohol abuse or dependence (p = 2.49 × 10−7; FDR q = 0.0375). Finally, we identified several SNPs in high LD with rs13140180 (p = 2.58 × 10−7; FDR q = .0016), an intergenic region on chromosome 4, and several SNPs in the TMPRSS15 associated with right nucleus accumbens volume (p = 2.58 × 10−7; FDR q = 0.017). Both TRAM1L1 and TMPRSS15 have been previously implicated in neuronal function. Key results survived genome-wide multiple-testing correction in our sample. Leveraging neuroimaging phenotypes may offer a shortcut, relative to clinical phenotypes, in mapping the genetic architecture and neurobiological pathways of PTSD.
Background Sickle cell disease (SCD) is a chronic medical condition characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, and subsequently, end-organ damage and reduced survival. Because of this significant pathophysiology and early mortality, we hypothesized that patients with SCD are experiencing accelerated biological aging compared with individuals without SCD.
Methods We utilized the DunedinPACE measure to compare the epigenetic pace of aging in 131 Black Americans with SCD to 1391 Black American veterans without SCD.
Results SCD patients displayed a significantly accelerated pace of aging (DunedinPACE mean difference of 0.057 points) compared with the veterans without SCD, whereby SCD patients were aging ≈0.7 months more per year than those without SCD (p = 4.49 × 10−8). This was true, even though the SCD patients were significantly younger according to chronological age than the individuals without SCD, making the epigenetic aging discrepancy even more apparent. This association became stronger when we removed individuals with posttraumatic stress disorder from the non-SCD group (p = 2.18 × 10−9), and stronger still when we restricted the SCD patients to those with hemoglobin SS and Sβ0 thalassemia genotypes (p = 1.61 × 10−10).
Conclusions These data support our hypothesis that individuals with SCD experience accelerated biological aging as measured by global epigenetic variation. The assessment of epigenetic measures of biological aging may prove useful to identify which SCD patients would most benefit from clinical interventions to reduce mortality.
In: Logue , M W , Miller , M W , Wolf , E J , Huber , B R , Morrison , F G , Zhou , Z , Zheng , Y , Smith , A K , Daskalakis , N P , Ratanatharathorn , A , Uddin , M , Nievergelt , C M , Ashley-Koch , A E , Baker , D G , Beckham , J C , Garrett , M E , Boks , M P , Geuze , E , Grant , G A , Hauser , M A , Kessler , R C , Kimbrel , N A , Maihofer , A X , Marx , C E , Qin , X-J , Risbrough , V B , Rutten , B P F , Stein , M B , Ursano , R J , Vermetten , E , Vinkers , C H , Ware , E B , Stone , A , Schichman , S A , McGlinchey , R E , Milberg , W P , Hayes , J P , Verfaellie , M & Traumatic Stress Brain Study Group 2020 , ' An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci ' , Clinical epigenetics , vol. 12 , no. 1 , 46 . https://doi.org/10.1186/s13148-020-0820-0
Background Previous studies using candidate gene and genome-wide approaches have identified epigenetic changes in DNA methylation (DNAm) associated with posttraumatic stress disorder (PTSD). Methods In this study, we performed an EWAS of PTSD in a cohort of Veterans (n = 378 lifetime PTSD cases and 135 controls) from the Translational Research Center for TBI and Stress Disorders (TRACTS) cohort assessed using the Illumina EPIC Methylation BeadChip which assesses DNAm at more than 850,000 sites throughout the genome. Our model included covariates for ancestry, cell heterogeneity, sex, age, and a smoking score based on DNAm at 39 smoking-associated CpGs. We also examined in EPIC-based DNAm data generated from pre-frontal cortex (PFC) tissue from the National PTSD Brain Bank (n = 72). Results The analysis of blood samples yielded one genome-wide significant association with PTSD at cg19534438 in the gene G0S2 (p = 1.19 x 10(-7), p(adj) = 0.048). This association was replicated in an independent PGC-PTSD-EWAS consortium meta-analysis of military cohorts (p = 0.0024). We also observed association with the smoking-related locus cg05575921 in AHRR despite inclusion of a methylation-based smoking score covariate (p = 9.16 x 10(-6)), which replicates a previously observed PGC-PTSD-EWAS association (Smith et al. 2019), and yields evidence consistent with a smoking-independent effect. The top 100 EWAS loci were then examined in the PFC data. One of the blood-based PTSD loci, cg04130728 in CHST11, which was in the top 10 loci in blood, but which was not genome-wide significant, was significantly associated with PTSD in brain tissue (in blood p = 1.19 x 10(-5), p(adj) = 0.60, in brain, p = 0.00032 with the same direction of effect). Gene set enrichment analysis of the top 500 EWAS loci yielded several significant overlapping GO terms involved in pathogen response, including "Response to lipopolysaccharide" (p = 6.97 x 10(-6), p(adj) = 0.042). Conclusions The cross replication observed in independent cohorts is evidence that ...
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
In: Smith , A K , Ratanatharathorn , A , Maihofer , A X , Naviaux , R K , Aiello , A E , Amstadter , A B , Ashley-Koch , A E , Baker , D G , Beckham , J C , Boks , M P , Bromet , E , Dennis , M , Galea , S , Garrett , M E , Geuze , E , Guffanti , G , Hauser , M A , Katrinli , S , Kilaru , V , Kessler , R C , Kimbrel , N A , Koenen , K C , Kuan , P-F , Li , K , Logue , M W , Lori , A , Luft , B J , Miller , M W , Naviaux , J C , Nugent , N R , Qin , X , Ressler , K J , Risbrough , V B , Rutten , B P F , Stein , M B , Ursano , R J , Vermetten , E , Vinkers , C H , Wang , L , Youssef , N A , Uddin , M , Nievergelt , C M , INTRuST Clinical Consortium , VA Mid-Atlantic MIRECC Workgroup & PGC PTSD Epigenetics Workgroup 2020 , ' Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR ' , Nature Communications , vol. 11 , no. 1 , 5965 . https://doi.org/10.1038/s41467-020-19615-x
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD. PTSD has been associated with DNA methylation of specific loci in the genome, but studies have been limited by small sample sizes. Here, the authors perform a meta-analysis of DNA methylation data from 10 different cohorts and identify CpGs in AHRR that are associated with PTSD.
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
In: Smith , A K , Ratanatharathorn , A , Maihofer , A X , Naviaux , R K , Aiello , A E , Amstadter , A B , Ashley-Koch , A E , Baker , D G , Beckham , J C , Boks , M P , Bromet , E , Dennis , M , Galea , S , Garrett , M E , Geuze , E , Guffanti , G , Hauser , M A , Katrinli , S , Kilaru , V , Kessler , R C , Kimbrel , N A , Koenen , K C , Kuan , P F , Li , K , Logue , M W , Lori , A , Luft , B J , Miller , M W , Naviaux , J C , Nugent , N R , Qin , X , Ressler , K J , Risbrough , V B , Rutten , B P F , Stein , M B , Ursano , R J , Vermetten , E , Vinkers , C H , Wang , L , Youssef , N A , Marx , C , Grant , G , Stein , M , Qin , X J , Jain , S , McAllister , T W , Zafonte , R , Lang , A , Coimbra , R , Andaluz , N , Shutter , L , George , M S , Brancu , M , Calhoun , P S , Dedert , E , Elbogen , E B , Fairbank , J A , Hurley , R A , Kilts , J D , Kirby , A , Marx , C E , McDonald , S D , Moore , S D , Morey , R A , Naylor , J C , Rowland , J A , Swinkels , C , Szabo , S T , Taber , K H , Tupler , L A , Van Voorhees , E E , Yoash-Gantz , R E , Basu , A , Brick , L A , Dalvie , S , Daskalakis , N P , Ensink , J B M , Hemmings , S M J , Herringa , R , Ikiyo , S , Koen , N , Kuan , P F , Montalvo-Ortiz , J , Nispeling , D , Pfeiffer , J , Qin , X J , Ressler , K J , Schijven , D , Seedat , S , Shinozaki , G , Sumner , J A , Swart , P , Tyrka , A , Van Zuiden , M , Wani , A , Wolf , E J , Zannas , A , Uddin , M , Nievergelt , C M , INTRuST Clinical Consortium , VA Mid-Atlantic MIRECC Workgroup & PGC PTSD Epigenetics Workgroup 2020 , ' Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR ' , Nature Communications , vol. 11 , no. 1 , 5965 . https://doi.org/10.1038/s41467-020-19615-x
Epigenetic differences may help to distinguish between PTSD cases and trauma-exposed controls. Here, we describe the results of the largest DNA methylation meta-analysis of PTSD to date. Ten cohorts, military and civilian, contribute blood-derived DNA methylation data from 1,896 PTSD cases and trauma-exposed controls. Four CpG sites within the aryl-hydrocarbon receptor repressor (AHRR) associate with PTSD after adjustment for multiple comparisons, with lower DNA methylation in PTSD cases relative to controls. Although AHRR methylation is known to associate with smoking, the AHRR association with PTSD is most pronounced in non-smokers, suggesting the result was independent of smoking status. Evaluation of metabolomics data reveals that AHRR methylation associated with kynurenine levels, which are lower among subjects with PTSD. This study supports epigenetic differences in those with PTSD and suggests a role for decreased kynurenine as a contributor to immune dysregulation in PTSD.
Importance:Primary open-angle glaucoma presents with increased prevalence and a higher degree of clinical severity in populations of African ancestry compared with European or Asian ancestry. Despite this, individuals of African ancestry remain understudied in genomic research for blinding disorders. Objectives:To perform a genome-wide association study (GWAS) of African ancestry populations and evaluate potential mechanisms of pathogenesis for loci associated with primary open-angle glaucoma. Design, Settings, and Participants:A 2-stage GWAS with a discovery data set of 2320 individuals with primary open-angle glaucoma and 2121 control individuals without primary open-angle glaucoma. The validation stage included an additional 6937 affected individuals and 14 917 unaffected individuals using multicenter clinic- and population-based participant recruitment approaches. Study participants were recruited from Ghana, Nigeria, South Africa, the United States, Tanzania, Britain, Cameroon, Saudi Arabia, Brazil, the Democratic Republic of the Congo, Morocco, Peru, and Mali from 2003 to 2018. Individuals with primary open-angle glaucoma had open iridocorneal angles and displayed glaucomatous optic neuropathy with visual field defects. Elevated intraocular pressure was not included in the case definition. Control individuals had no elevated intraocular pressure and no signs of glaucoma. Exposures:Genetic variants associated with primary open-angle glaucoma. Main Outcomes and Measures:Presence of primary open-angle glaucoma. Genome-wide significance was defined as P C) with primary open-angle glaucoma (odds ratio [OR], 1.32 [95% CI, 1.20-1.46]; P = 2 × 10-8). The association was validated in an analysis of an additional 6937 affected individuals and 14 917 unaffected individuals (OR, 1.15 [95% CI, 1.09-1.21]; P < .001). Each copy of the rs59892895*C risk allele was associated with increased risk of primary open-angle glaucoma when all data were included in a meta-analysis (OR, 1.19 [95% CI, 1.14-1.25]; P = 4 × 10-13). The rs59892895*C risk allele was present at appreciable frequency only in African ancestry populations. In contrast, the rs59892895*C risk allele had a frequency of less than 0.1% in individuals of European or Asian ancestry. Conclusions and Relevance:In this genome-wide association study, variants at the APBB2 locus demonstrated differential association with primary open-angle glaucoma by ancestry. If validated in additional populations this finding may have implications for risk assessment and therapeutic strategies.