22 p.-3 fig.-3 tab. Antonell, Anna et al. ; Alzheimer's disease (AD) is the most common of the neurodegenerative diseases. Recent diagnostic criteria have defined a preclinical disease phase during which neuropathological substrates are thought to be present in the brain. There is an urgent need to find measurable alterations in this phase as well as a good peripheral biomarker in the blood. We selected a cohort of 100 subjects (controls = 47; preclinical AD = 11; patients with AD = 42) and analyzed whole blood expression of 20 genes by quantitative polymerase chain reaction. The selected genes belonged to calcium-signaling, senescence and autophagy, and mitochondria/oxidative stress pathways. Additionally, two genes associated with an increased risk of developing AD (CLU and BIN1) were also analyzed. We detected significantly different gene expressions of BECN1 and PRKCB between the control and the AD groups; and, of CDKN2A between the control and the preclinical AD groups. Notably, these three genes are also considered tumor suppressor (CDKN2A and BECN1) or tumor promoter (PRKCB) genes. Gene-gene expression Pearson correlations were computed separately for controls and patients with AD. The significant correlations (p<0.001) were represented in a network analysis with Cytoscape tool, which suggested an uncoupling of mitochondriarelated genes in AD group. Whole blood is emerging as a valuable tissue in the study of the physiopathology of AD. ; This study was supported by grants to JLM (Consolider CSD2010-00045) and to ALL (PI14/00282, ISCIII, Cofinancia FEDER, Unión Europea, Otra manera de hacer Europa) from the Spanish Ministry of Economy and Competitiveness. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n°115568, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution. ; Peer reviewed
Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. ; This research was funded by Spanish MINECO and European Regional Development Fund, grant number SAF2016- 77703; Spanish MCINN, grant number PID2019-106285RB; Catalan Autonomous Government AGAUR, grant number 2017-SGR-106; Competitiveness Operational Programme 2014-2020, C-Reactive protein therapy for stroke-associated dementia, ID P_37_674, MySMIS code: 103432, contract 51/05.09.2016; and the CERCA Programme/Generalitat de Catalunya. RCo was supported by a post-doctoral research contract of the Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain. AL (PERIS SLT008/18/00061) received funding from Departament de Salut de la Generalitat de Catalunya. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
Altres ajuts: The Catalan frontotemporal initiative (CATFI) is funded by the Health Department of the Government of Catalonia (grant PERIS SLT002/16/00408 to Alberto Lleó and Raquel Sánchez-Valle). This work was also supported by research grants from the CIBERNED Program (Program 1, Alzheimer Disease to Alberto Lleó and SIGNAL study, file://www.signalstudy.es), partly funded by Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, "Una manera de hacer Europa." This work has also been supported by a "Marató TV3" grant (20141210 to Juan Fortea, 044412 to Rafael Blesa, 20143710 to Ricard Rojas-García and 20143810 to Raquel Sánchez-Valle) and Fundación BBVA (grant to A. Lleó) and a grant from the Fundació Bancaria La Caixa to Rafael Blesa. Ignacio Illán-Gala and Sergi Borrego-Écija are supported by the Rio Hortega grant from "Acción estratégica en Salud 2013-2016" and the European Social Fund. Ignacio Illán-Gala is supported by the Global Brain Health Institute (Atlantic Fellow for Equity in Brain Health). We acknowledge all the participants in this study and all the collaborators of the SPIN cohort. We also acknowledge Soraya Torres and Laia Muñoz for technical assistance. We thank EUROIMMUN for providing Aβ1-38 and Aβ1-40 ELISA assays for this study. ; Objective: We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)-derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)-related syndromes, Alzheimer's disease (AD), and healthy controls. Methods: We included 214 participants with CSF available recruited at two centers: 93 with FTLD-related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid β (Aβ)1-42, Aβ1-40, Aβ1-38, and soluble β fragment of APP (sAPPβ) were centrally analyzed. We compared CSF levels of APP-derived peptides between groups and, we studied the correlation between CSF ...
4 páginas, 1 figura, a tabla. Los autores pertenecen a The dementia genetic Spanish consortium (DEGESCO). ; A non-synonymous genetic rare variant, rs75932628-T (p.R47H), in the TREM2 gene has recently been reported to be a strong genetic risk factor for Alzheimer's disease (AD). Also, rare recessive mutations have been associated with frontotemporal dementia (FTD). We aimed to investigate the role of p.R47H variant in AD and FTD through a multi-center study comprising 3,172 AD and 682 FTD patients and 2,169 healthy controls from Spain. We found that 0.6% of AD cases carried this variant compared to 0.1% of controls (odds ratio [OR]=4.12, 95% confidence interval [CI]: 1.21-14.00, P=0.014). A meta-analysis comprising 32,598 subjects from four previous studies demonstrated the large effect of the p.R47H variant in AD risk (OR=4.11, 95% CI: 2.99-5.68, P=5.27x10-18). We did not find an association between p.R47H and age of onset of AD or family history of dementia. Finally, none of the FTD patients harbored this genetic variant. These data strongly support the important role of p.R47H in AD risk and suggest that this rare genetic variant is not related to FTD. ; This study was supported by grants from Instituto de Salud Carlos III (PI12/01311 and 12/00013), grants from the Ministry of Science (SAF2010-15558, SAF2009-10434), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, Spain), Consolider (CSD2010-00045), and the Department of Health of the Government of Navarra (refs. 13085 and 3/2008). CR held during the period 2009-2013 a "Torres Quevedo" fellowship from the Spanish Ministry of Science and Technology, co-financed by the European Social Fund. Fundació ACE researchers are indebted to Trinitat Port-Carbó and her family who are supporting Fundació ACE scientific programs. ; Peer reviewed
16 páginas, 5 figuras ; Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease. ; The present work has been performed as part of the doctoral program of I. de Rojas at the Universitat de Barcelona (Barcelona, Spain) supported by national grant from the Instituto de Salud Carlos III FI20/00215. The Genome Research @ Fundació ACE project (GR@ACE) is supported by Grifols SA, Fundación bancaria "La Caixa", Fundació ACE, and CIBERNED. A.R. and M.B. receive support from the European Union/EFPIA Innovative Medicines Initiative Joint undertaking ADAPTED and MOPEAD projects (grant numbers 115975 and 115985, respectively). M.B. and A.R. are also supported by national grants PI13/02434, PI16/01861, PI17/01474, PI19/01240 and PI19/01301. Acción Estratégica en Salud is integrated into the Spanish National R + D + I Plan and funded by ISCIII (Instituto de Salud Carlos III)—Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER—"Una manera de hacer Europa"). Some control samples and data from patients included in this study were provided in part by the National DNA Bank Carlos III (www.bancoadn.org, University of Salamanca, Spain) and Hospital Universitario Virgen de Valme (Sevilla, Spain); they were processed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committee. Amsterdam dementia Cohort (ADC): Research of the Alzheimer center Amsterdam is part of the neurodegeneration research program of Amsterdam Neuroscience. The Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. The clinical database structure was developed with funding from Stichting Dioraphte. Genotyping of the Dutch case-control samples was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-829-029 (ZonMW project number 733051061). 100-Plus study: We are grateful for the collaborative efforts of all participating centenarians and their family members and/or relations. This work was supported by Stichting Alzheimer Nederland (WE09.2014-03), Stichting Diorapthe, horstingstuit foundation, Memorabel (ZonMW project number 733050814, 733050512) and Stichting VUmc Fonds. Genotyping of the 100-Plus Study was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-829-029 (ZonMW project number 733051061). Longitudinal Aging Study Amsterdam (LASA) is largely supported by a grant from the Netherlands Ministry of Health, Welfare and Sports, Directorate of Long-Term Care. The authors are grateful to all LASA participants, the fieldwork team and all researchers for their ongoing commitment to the study. This work was supported by a grant (European Alzheimer DNA BioBank, EADB) from the EU Joint Program—Neurodegenerative Disease Research (JPND) and also funded by Inserm, Institut Pasteur de Lille, the Lille Métropole Communauté Urbaine, the French government's LABEX DISTALZ program (development of innovative strategies for a transdisciplinary approach to AD). Genotyping of the German case-control samples was performed in the context of EADB (European Alzheimer DNA biobank) funded by the JPco-fuND (German Federal Ministry of Education and Research, BMBF: 01ED1619A). Full acknowledgments for the studies that contributed data can be found in the Supplementary Note. We thank the numerous participants, researchers, and staff from many studies who collected and contributed to the data. We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary results data for these analyses. The investigators within IGAP contributed to the design and implementation of IGAP and/or provided data but did not participate in analysis or writing of this report. IGAP was made possible by the generous participation of the control subjects, the patients, and their families. The i–Select chips was funded by the French National Foundation on AD and related disorders. EADI was supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD was supported by the Medical Research Council (Grant n° 503480), Alzheimer's Research UK (Grant n° 503176), the Wellcome Trust (Grant n° 082604/2/07/Z) and German Federal Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant n° 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIA/NHLBI grants AG049505, AG058589, HL105756 and AGES contract N01–AG–12100, the Icelandic Heart Association, and the Erasmus Medical Center and Erasmus University. ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 AG021886, U01 AG016976, and the Alzheimer's Association grant ADGC–10–196728. This research has been conducted using the UK Biobank public resource obtained through the University of Edinburg Data Share (https://datashare.is.ed.ac.uk/handle/10283/3364). ; Peer reviewed