Abstract The evolution of a flash drought event, characterized by a period of rapid drought intensification, is assessed using standard drought monitoring datasets and on-the-ground reports obtained via a written survey of agricultural stakeholders after the flash drought occurred. The flash drought impacted agricultural production across a five-state region centered on the Black Hills of South Dakota during the summer of 2016. The survey asked producers to estimate when certain drought impacts, ranging from decreased soil moisture to plant stress and diminished water resources, first occurred on their land. The geographic distribution and timing of the survey responses were compared to the U.S. Drought Monitor and to datasets depicting anomalies in evapotranspiration, precipitation, and soil moisture. Overall, the survey responses showed that this event was a multifaceted drought that caused a variety of impacts across the region. Comparisons of the survey reports to the drought monitoring datasets revealed that the topsoil moisture dataset provided the earliest warning of drought development, but at the expense of a high false alarm rate. Anomalies in evapotranspiration were closely aligned to the survey reports of plant stress and also provided a more focused depiction of where the worst drought conditions were located. This study provides evidence that qualitative reports of drought impacts obtained via written surveys provide valuable information that can be used to assess the accuracy of high-resolution drought monitoring datasets.
Forest ecosystem services such as clean water, wildlife habitat, and timber supplies are increasingly threatened by drought and disturbances (e.g., harvesting, fires and conversion to other uses), which can have great impacts on stand development and water balance. Improved understanding of the hydrologic response of forested systems to drought and disturbance at spatiotemporal resolutions commensurate with these impacts is important for effective forest management. Evapotranspiration (ET) is a key hydrologic variable in assessing forest functioning and health, but it remains a challenge to accurately quantify ET at landscape scales with the spatial and temporal detail required for effective decision-making. In this study, we apply a multi-sensor satellite data fusion approach to study the response of forest ET to drought and disturbance over a 7-year period. This approach combines Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) ET product time series retrieved using a surface energy balance model to generate a multi-year ET datacube at 30-m resolution and daily timesteps. The study area (similar to 900 km(2)) contains natural and managed forest as well as croplands in the humid lower coastal plains in North Carolina, USA, and the simulation period from 2006 to 2012 includes both normal and severe drought conditions. The model results were evaluated at two AmeriFlux sites (US-NC2 and US-NC1) dominated by a mature and a recently clearcut pine plantation, respectively, and showed good agreement with observed fluxes, with 813% relative errors at monthly timesteps. Changes in water use patterns in response to drought and disturbance as well as forest stand aging were assessed using the remotely sensed time series describing total evapotranspiration, the transpiration (T) component of ET, and a moisture stress metric given by the actual-to-reference ET ratio (f(RET)). Analyses demonstrate differential response to drought by land cover type and stand age, with larger impacts on total ET observed in young pine stands than in mature stands which have substantially deeper rooting systems. Transpiration flux shows a clear ascending trend with the growth of young pine plantations, while stand thinning within the plantation leads to decreases in both remotely sensed leaf area index and T, as expected. Time series maps of f(RET) anomalies at 30-m resolution capture signals of drought, disturbance and the subsequent recovery after clearcut at the stand scale and may be an effective indicator for water use change detection and monitoring in forested landscapes. ; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA) [NNH14AX36I] ; This work was funded in part by a grant from National Aeronautics and Space Administration (NNH14AX36I). We thank the Weyerhaeuser Company for providing stand age data. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water and land management, land use change and climate variability. Satellite remote sensing provides an effective means for diagnosing ET patterns over heterogeneous landscapes; however, limitations on the spatial and temporal resolution of satellite data, combined with the effects of cloud contamination, constrain the amount of detail that a single satellite can provide. In this study, we describe an application of a multi-sensor ET data fusion system over a mixed forested/agricultural landscape in North Carolina, USA, during the growing season of 2013. The fusion system ingests ET estimates from the Two-Source Energy Balance Model (TSEB) applied to thermal infrared remote sensing retrievals of land surface temperature from multiple satellite platforms: hourly geostationary satellite data at 4 km resolution, daily 1 km imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and biweekly Landsat thermal data sharpened to 30 m. These multiple ET data streams are combined using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to estimate daily ET at 30m resolution to investigate seasonal water use behavior at the level of individual forest stands and land cover patches. A new method, also exploiting the STARFM algorithm, is used to fill gaps in the Land-sat ET retrievals due to cloud cover and/or the scan-line corrector (SLC) failure on Landsat 7. The retrieved daily ET time series agree well with observations at two AmeriFlux eddy covariance flux tower sites in a managed pine plantation within the modeling domain: US-NC2 located in a mid-rotation (20-year-old) loblolly pine stand and US-NC3 located in a recently clear-cut and replanted field site. Root mean square errors (RMSEs) for NC2 and NC3 were 0.99 and 1.02 mm day(-1), respectively, with mean absolute errors of approximately 29% at the daily time step, 12% at the monthly time step and 0.7% over the full study period at the two flux tower sites. Analyses of water use patterns over the plantation indicate increasing seasonal ET with stand age for young to mid-rotation stands up to 20 years, but little dependence on age for older stands. An accounting of consumptive water use by major land cover classes representative of the modeling domain is presented, as well as relative partitioning of ET between evaporation (E) and transpiration (T) components obtained with the TSEB. The study provides new insights about the effects of management and land use change on water yield over forested landscapes. ; NASANational Aeronautics & Space Administration (NASA) [NNH14AX36I] ; This work was funded in part by a grant from NASA (NNH14AX36I). We thank the Weyerhaeuser Company for providing stand age data. The US Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 7206382 (TDD). USDA is an equal opportunity provider and employer. ; Public domain authored by a U.S. government employee
Particularly in light of California's recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment. ; info:eu-repo/semantics/publishedVersion
Particularly in light of California's recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.