Political corruption and the role of public prosecutors in Italy
In: Crime, law and social change: an interdisciplinary journal, Band 24, Heft 4, S. 273-292
ISSN: 1573-0751
12 Ergebnisse
Sortierung:
In: Crime, law and social change: an interdisciplinary journal, Band 24, Heft 4, S. 273-292
ISSN: 1573-0751
In: Desarrollo económico: revista de ciencias sociales, Band 35, Heft 139, S. 475
ISSN: 1853-8185
In: Crime, law and social change: an interdisciplinary journal, Band 24, Heft 4, S. 273
ISSN: 0925-4994
In: Crime, law and social change: an interdisciplinary journal, Band 24, S. 273-292
ISSN: 0925-4994
In: Economic and social affairs
This publication provides an overview of 145 successful innovations in governance and public administration from 50 countries that received the United Nations Public Service Awards, which is the most prestigious international recognition of excellence in public service. The purpose of this book is to disseminate, through descriptive case studies, information about innovative practices by looking at the problem that led to an innovation; the solution that was designed and implemented to respond to the specific challenge; the actors and steps involved in the innovation process, and lessons learned. Learning more about how public institutions from around the world have solved difficult governance challenges can be a powerful and inspirational tool for those engaged in improving public sector performance
In: Revue internationale des sciences administratives: revue d'administration publique comparée, Band 71, Heft 2, S. 359-376
ISSN: 0303-965X
Résumé Dans un monde en rapide et constante évolution, l'administration publique doit pouvoir répondre le plus rapidement et le plus efficacement possible aux nouveaux défis et aux nouvelles priorités. Le processus de réinvention et de revitalisation exige une vision, des connaissances et une capacité. Des qualités similaires sont exigées des Nations unies si l'organisation veut aider efficacement les pays en développement et les pays en transition dans leur volonté de réformer l'administration publique. Cet article propose un exposé historique détaillé de l'évolution de la conception du rôle de l'État au cours des dernières décennies et des conséquences sur les pays en développement, de la façon dont les Nations unies ont contribué à rappeler le rôle de l'administration publique dans le développement et des travaux préparatoires considérables effectués dans ce domaine par l'Institut international des sciences administratives (IISA). Cet article illustre également la façon dont le Programme des Nations unies sur l'administration publique a été réinventé pour contribuer à réinventer l'État et distingue certains des défis qui apparaissent dans le domaine de l'administration publique.
In: International review of administrative sciences: an international journal of comparative public administration, Band 71, Heft 2, S. 337-353
ISSN: 1461-7226
In a world that is changing rapidly and constantly, public administration needs to be able to respond as rapidly and as effectively as possible to new challenges and priorities. The process of reinvention and revitalization requires vision, knowledge and capacity. The same qualities are required from the United Nations if they are to assist developing countries and countries with economies in transition effectively in their efforts to reform public administration. This article provides an historical excursus of how the conception of the role of the state has changed in the past decades and its impact on developing countries; how instrumental the United Nations was in re-establishing awareness of the role of public administration in development, and the significant preparatory work done in this area by the International Institute of Administrative Sciences (IIAS). The article also illustrates how the United Nations Programme in Public Administration has reinvented itself in order to help reinvent government and singles out some of the emerging challenges in the field of public administration.
In: International review of administrative sciences: an international journal of comparative public administration, Band 71, Heft 2, S. 337-354
ISSN: 0020-8523
Alberti, Adriana . et al.-- 20 pages, 6 figures, 2 tables ; A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009–2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems ; We thank the commitment of the following people and sponsors: CNRS (in particular Groupement de Recherche GDR3280), European Molecular Biology Laboratory (EMBL), Genoscope/CEA, the French Government 'Investissements d'Avenir' programmes OCEANOMICS (ANR-11-BTBR-0008) and FRANCE GENOMIQUE (ANR-10-INBS-09-08), Agence Nationale de la Recherche, European Union FP7 (MicroB3/No.287589) and the U.S. National Science Foundation awards DEB-1031049, OCE-0623288, OCE-821374 and OCE-1019242 (to M.E.S. and R.S.) and OCE-1335810 (to R.S.). Additional funding was provided by Spanish Ministry of Science and Innovation grant CGL2011-26848/BOS MicroOcean PANGENOMICS and by Japan Society for the Promotion of Science (JSPS)/KAKENHI (grant numbers 26430184, 16H06429, 16K21723 and 16H06437). We also thank the support and commitment of agnès b. and Etienne Bourgois, the Veolia Environment Foundation, Region Bretagne, Lorient Agglomeration, World Courier, Illumina, the Eléctricité de France (EDF) Foundation, Fondation pour la recherche sur la biodiversité (FRB), the Foundation Prince Albert II de Monaco, the Tara Foundation, its schooner and teams ; Peer Reviewed
BASE
[Background]: Since their domestication 10,500 years ago, goat populations with distinctive genetic backgrounds have adapted to a broad variety of environments and breeding conditions. The VarGoats project is an international 1000-genome resequencing program designed to understand the consequences of domestication and breeding on the genetic diversity of domestic goats and to elucidate how speciation and hybridization have modeled the genomes of a set of species representative of the genus Capra. ; [Findings]: A dataset comprising 652 sequenced goats and 507 public goat sequences, including 35 animals representing eight wild species, has been collected worldwide. We identified 74,274,427 single nucleotide polymorphisms (SNPs) and 13,607,850 insertion-deletions (InDels) by aligning these sequences to the latest version of the goat reference genome (ARS1). A Neighbor-joining tree based on Reynolds genetic distances showed that goats from Africa, Asia and Europe tend to group into independent clusters. Because goat breeds from Oceania and Caribbean (Creole) all derive from imported animals, they are distributed along the tree according to their ancestral geographic origin. ; [Conclusions]: We report on an unprecedented international effort to characterize the genome-wide diversity of domestic goats. This large range of sequenced individuals represents a unique opportunity to ascertain how the demographic and selection processes associated with post-domestication history have shaped the diversity of this species. Data generated for the project will also be extremely useful to identify deleterious mutations and polymorphisms with causal effects on complex traits, and thus will contribute to new knowledge that could be used in genomic prediction and genome-wide association studies. ; We are grateful to France Génomique "Call for high impact projects" (ANR‐10‐INBS‐09‐08) for selecting our project and providing us the resources to sequence 400 goats. We would like to mention that APIS-GENE funded some WGS sequences through ACTIVEGOAT & CAPRISNP projects. We thank the Occitanie region and the Animal Genetics Division of the French National Institute for Agriculture, Food and Environment (INRAE-GA) for financing the PhD of ET. We thank the Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation for financing LD. We thank André Eggen (Illumina) for providing chips to genotype 192 animals. We thank the Animal Genetics Division of the French National Institute for Agriculture, Food and Environment (INRAE-GA) for funding VarGoats2 grant, which allowed DNA extraction and genotyping of 384 animals and CRB-Anim, Grant Agreement ANR-11-INBS-0003, (https://crb-anim.fr/) for funding French local breeds sampling. We thank the Italian Goat and Sheep Breeders Association (AssoNaPa) for supporting in sampling. Whole-genome sequencing libraries for the African goats were prepared and sequenced by Edinburgh Genomics and funded via Biotechnology and Biological Sciences Research Council research grant (BBS/OS/GC/000012F) 'Reference genome and population sequencing of African goats' awarded to The Roslin Institute. USDA-ARS with funding from USAID funded the collection of samples from Uganda, Tanzania, Malawi, Mozambique and Zimbabwe. EC and MS were partially supported by the Bill & Melinda Gates Foundation and with UK aid from the UK Government's Department for International Development (Grant Agreement OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health (CTLGH), established jointly by the University of Edinburgh, SRUC (Scotland's Rural College), and the International Livestock Research Institute. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation nor the UK Government. ; Peer reviewed
BASE
This article is contribution number 94 of Tara Oceans.-- 37 pages, 20 figures, 1 table, supplementary information https://doi.org/10.1016/j.cell.2019.10.014.-- All raw reads are available through ENA at https://www.ebi.ac.uk/ena using the identifiers listed in https://doi.org/10.5281/zenodo.3473199. Processed data are accessible at https://www.ebi.ac.uk/biostudies/studies/S-BSST297, and additional information is provided in https://doi.org/10.5281/zenodo.3473199 and at the companion website: https://www.ocean-microbiome.org. Scripts used in this manuscript are available through a Github repository at https://github.com/SushiLab/omrgc_v2_scripts ; Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms ; Tara Oceans (that includes both the Tara Oceans and Tara Oceans Polar Circle expeditions) would not exist without the leadership of the Tara Expeditions Foundation and the continuous support of 23 institutes (https://oceans.taraexpeditions.org). We further thank the commitment of the following sponsors: CNRS (in particular Groupement de Recherche GDR3280 and the Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE); European Molecular Biology Laboratory (EMBL); Genoscope/CEA; the French Ministry of Research; the French Government "Investissements d'Avenir" programmes OCEANOMICS (ANR-11-BTBR-0008), FRANCE GENOMIQUE (ANR-10-INBS-09-08), MEMO LIFE (ANR-10-LABX-54), and PSL∗ Research University (ANR-11-IDEX-0001-02); Gordon and Betty Moore Foundation (award 3790); the US National Science Foundation (OCE#1536989 and OCE#1829831 to M.B.S.); the European Union's Horizon 2020 research and innovation programme (grant agreement 686070); and the Ohio Supercomputer and the EMBL and ETH Zürich HPC facilities for computational support. Funding for the collection and processing of the TARA data set was provided by NASA Ocean Biology and Biogeochemistry program under grants NNX11AQ14G, NNX09AU43G, NNX13AE58G, and NNX15AC08G to the University of Maine and Canada Excellence Research Chair on Remote sensing of Canada's new Arctic frontier Canada Foundation for Innovation. C.B. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement 835067). S.G.A. thanks the Spanish Ministry of Economy and Competitiveness (CTM2017-87736-R). S. Sunagawa. is supported by the ETH and the Helmut Horten Foundation and by funding from the Swiss National Foundation (205321_184955) ; Peer Reviewed
BASE
29 pages, 9 figures, supporting information https://doi.org/10.1029/2018GB006022 ; Predicting responses of plankton to variations in essential nutrients is hampered by limited in situ measurements, a poor understanding of community composition, and the lack of reference gene catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical cycles and climate. To assess the impact of iron availability on plankton communities, we explored the comprehensive bio‐oceanographic and bio‐omics data sets from Tara Oceans in the context of the iron products from two state‐of‐the‐art global scale biogeochemical models. We obtained novel information about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused by natural iron fertilization, although they are not captured in large‐scale biogeochemical models. This work provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate formulations of resource bioavailability in biogeochemical models, thus improving our understanding of plankton resilience in a changing environment ; We thank the commitment of the following people and sponsors who made this singular expedition possible: CNRS (in particular Groupement de Recherche GDR3280, the Mission Pour l'Interdisciplinarité – Project MEGALODOM, and the Fédération de Recherche GO‐SEE FR2022), European Molecular Biology Laboratory (EMBL), Genoscope/CEA, the French Government "Investissements d'Avenir" programs Oceanomics (ANR‐11‐BTBR‐0008), MEMO LIFE (ANR‐10‐LABX‐54), PSL* Research University (ANR‐11‐IDEX‐0001‐02), and FRANCE GENOMIQUE (ANR‐10‐INBS‐09), Fund for Scientific Research – Flanders, VIB, Stazione Zoologica Anton Dohrn, UNIMIB, ANR (projects "PHYTBACK/ANR‐2010‐1709‐01," POSEIDON/ANR‐09‐BLAN‐0348, PROMETHEUS/ANR‐09‐PCS‐GENM‐217, TARA‐GIRUS/ANR‐09‐PCS‐GENM‐218, SAMOSA/ANR‐13‐ADAP‐0010, CINNAMON/ANR‐17‐CE02‐0014‐01), EU FP7 (MicroB3/No. 287589), ERC Advanced Grant Award (Diatomite: 294823), the LouisD foundation of the Institut de France, a Radcliffe Institute Fellowship from Harvard University to C. B., JSPS/MEXT KAKENHI (26430184, 16H06437, and 16KT0020), The Canon Foundation (203143100025), Gordon and Betty Moore Foundation (award #3790) and the US National Science Foundation (awards OCE#1536989 and OCE#1829831) to MBS, agnès b., the Veolia Environment Foundation, Region Bretagne, World Courier, Illumina, Cap L'Orient, the EDF Foundation EDF Diversiterre, FRB, the Prince Albert II de Monaco Foundation, Etienne Bourgois, the Fonds Français pour l'Environnement Mondial, the TARA schooner and its captain and crew. ; Peer Reviewed
BASE