BACKGROUND: Few population-based studies have been conducted to determine the burden of neurological diseases in sub-Saharan Africa. A better understanding of the magnitude and impact of these disorders is pivotal to effective planning and provision of neurological services. METHODS: A cross-sectional survey of 2392 adults in Odeda Local Government Area, Ogun State, Southwest Nigeria was conducted between May and June 2015. Trained non-medical interviewers administered a screening instrument designed to measure the prevalence of neurological diseases and disability, while positive responders were subsequently examined by neurologists. Diagnoses were made clinically according to well-established criteria. RESULTS: The mean age of respondents was 37.2±16.1 years. A total of 842 cases of neurological diseases/disability were diagnosed in 815 individuals (26 individuals with more than one disorder). The all-cause neurological morbidity rate was 352 per 1000, while the crude prevalence rates of common neurological disorders were 304.3 per 1000 for primary headaches, 16.3 per 1000 for tropical ataxic neuropathy, 7.11 per 1000 for stroke, 5.85 per 1000 for essential tremor and 4.18 per 1000 for Parkinson's disease. Neurological years lost due to disability was 2806.18 per 100 000. CONCLUSION: This study provides evidence of a high neurological disease burden within the communities surveyed, which may be representative of Southwest Nigeria. In comparison with findings from previous studies within the same region, this report suggests a persistence of toxiconutritional disorders and postinfectious neurological sequelae on one hand and increased prevalence of non-communicable neurological disorders such as stroke and Parkinson's disease.
Stroke is a major cause of death in Sub-Saharan Africa (SSA) and genetic factors appear to play a part. This led to the development of stroke bio-banking and genomics research in SSA. Existing stroke studies have focused on causes, incidence rates, fatalities and effects. However, scant attention has been paid to the legal issues about stroke bio-banking and genomics research in the sub-region. Therefore, this article examines how genomics research and stroke bio-banking in SSA can be regulated through legislation. The article reports that there are germane issues to be addressed such as appropriate consent model, commercial use of biological samples, ownership right in biological samples and return of research results but that the position of the law on these issues is not satisfactory because there are no statute directly regulating them while existing regulations in these countries are either absent, outdated, conservative or difficult to navigate. The article therefore applies the theory of symbolic legislation and argues for legislative intervention through positive symbolic approach. It recommends that the statute to be enacted should only address policy issues by way of legal rules without being detailed while the understanding of the rules should be fostered in explanatory notes. The explanatory notes should contain examples borne of decided cases, cases settled out of court and the ethical guidelines prepared by Human Heredity and Health in Africa (H3 Africa). Where they are inadequate, recourse may be had to other ethical guidelines subject to the demands of local circumstances.
Abstract Stroke is a major cause of death in Sub-Saharan Africa (ssa) and genetic factors appear to play a part in its pathogenesis. This led to the development of stroke biobanking and genomics research in ssa. Existing stroke studies have focused on causes, incidence rates, fatalities and effects. However, scant attention has been paid to the legal issues about stroke biobanking and genomics research in the sub-region. Therefore, this article examines the legal implications of stroke biobanking and genomics research in Sub-Saharan Africa from a human rights perspective. The study argues that the right to dignity of the human person, the right to privacy, the right to freedom of information, the right to freedom from discrimination, the right to own property, the right to self-determination and the right to health may be implicated. The study concludes that the court may have to be involved in balancing one right against the other which may prove somewhat herculean depending on the circumstances of each case.
Stroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.
Validated screening tools for HIV-associated neurocognitive disorders (HAND) are lacking for the newly emergent ageing population of people living with HIV (PLWH) in sub-Saharan Africa (SSA). We aimed to validate and compare diagnostic accuracy of two cognitive screening tools, the International HIV dementia scale (IHDS), and the Identification and Interventions for Dementia in Elderly Africans (IDEA) screen, for identification of HAND in older PLWH in Tanzania. A systematic sample of 253 PLWH aged ≥ 50 attending a Government clinic in Tanzania were screened with the IHDS and IDEA. HAND were diagnosed by consensus American Academy of Neurology (AAN) criteria based on detailed clinical neuropsychological assessment. Strict blinding was maintained between screening and clinical evaluation. Both tools had limited diagnostic accuracy for HAND (area under the receiver operating characteristic (AUROC) curve 0.639–0.667 IHDS, 0.647–0.713 IDEA), which was highly-prevalent (47.0%). Accurate HAND screening tools for older PLWH in SSA are needed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s10461-020-02998-9) contains supplementary material, which is available to authorized users.
In: Pandian , J D , William , A G , Kate , M P , Norrving , B , Mensah , G A , Davis , S , Roth , G A , Thrift , A G , Kengne , A P , Kissela , B M , Yu , C , Kim , D , Rojas-Rueda , D , Tirschwell , D L , Abd-Allah , F , Gankpé , F , deVeber , G A , Hankey , G J , Jonas , J B , Sheth , K N , Dokova , K G , Mehndiratta , M M , Geleijnse , J M , Giroud , M , Bejot , Y , Sacco , R L , Sahathevan , R , Hamadeh , R R , Gillum , R F , Westerman , R , Akinyemi , R O , Barker-Collo , S , Truelsen , T , Caso , V , Rajagopalan , V , Venketasubramanian , N , Vlassovi , V V & Feigin , V L 2017 , ' Strategies to Improve Stroke Care Services in Low- and Middle-Income Countries : A Systematic Review ' , Neuroepidemiology , vol. 49 , no. 1-2 , pp. 45-61 . https://doi.org/10.1159/000479518
Background: The burden of stroke in low- and middle-income countries (LMICs) is large and increasing, challenging the already stretched health-care services. Aims and Objectives: To determine the quality of existing stroke-care services in LMICs and to highlight indigenous, inexpensive, evidence-based implementable strategies being used in stroke-care. Methods: A detailed literature search was undertaken using PubMed and Google scholar from January 1966 to October 2015 using a range of search terms. Of 921 publications, 373 papers were shortlisted and 31 articles on existing stroke-services were included. Results: We identified efficient models of ambulance transport and pre-notification. Stroke Units (SU) are available in some countries, but are relatively sparse and mostly provided by the private sector. Very few patients were thrombolysed; this could be increased with telemedicine and governmental subsidies. Adherence to secondary preventive drugs is affected by limited availability and affordability, emphasizing the importance of primary prevention. Training of paramedics, care-givers and nurses in post-stroke care is feasible. Conclusion: In this systematic review, we found several reports on evidence-based implementable stroke services in LMICs. Some strategies are economic, feasible and reproducible but remain untested. Data on their outcomes and sustainability is limited. Further research on implementation of locally and regionally adapted stroke-services and cost-effective secondary prevention programs should be a priority.
Stroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.
Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding: Bill & Melinda Gates Foundation. ; publishedVersion ; Peer reviewed
Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach $1398 pooled health spending per capita (US$ adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding Bill & Melinda Gates Foundation.
Background The UN's Sustainable Development Goals (SDGs) are grounded in the global ambition of "leaving no one behind". Understanding today's gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990-2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. Methods We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0-100, with 0 as the 2.5th percentile estimated between 1990 and 2030, and 100 as the 97.5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. Findings Globally, the median health-related SDG index was 56.7 (IQR 31.9-66.8) in 2016 and country-level performance markedly varied, with Singapore (86.8, 95% uncertainty interval 84.6-88.9), Iceland (86.0, 84.1-87.6), and Sweden (85.6, 81.8-87.8) having the highest levels in 2016 and Afghanistan (10.9, 9.6-11.9), the Central African Republic (11.0, 8.8-13.8), and Somalia (11.3, 9.5-13.1) recording the lowest. Between 2000 and 2016, notable improvements in the UHC index were achieved by several countries, including Cambodia, Rwanda, Equatorial Guinea, Laos, Turkey, and China; however, a number of countries, such as Lesotho and the Central African Republic, but also high-income countries, such as the USA, showed minimal gains. Based on projections of past trends, the median number of SDG targets attained in 2030 was five (IQR 2-8) of the 24 defined targets currently measured. Globally, projected target attainment considerably varied by SDG indicator, ranging from more than 60% of countries projected to reach targets for under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria, to less than 5% of countries projected to achieve targets linked to 11 indicator targets, including those for childhood overweight, tuberculosis, and road injury mortality. For several of the health-related SDGs, meeting defined targets hinges upon substantially faster progress than what most countries have achieved in the past. Interpretation GBD 2016 provides an updated and expanded evidence base on where the world currently stands in terms of the health-related SDGs. Our improved measure of UHC offers a basis to monitor the expansion of health services necessary to meet the SDGs. Based on past rates of progress, many places are facing challenges in meeting defined health-related SDG targets, particularly among countries that are the worst off. In view of the early stages of SDG implementation, however, opportunity remains to take actions to accelerate progress, as shown by the catalytic effects of adopting the Millennium Development Goals after 2000. With the SDGs' broader, bolder development agenda, multisectoral commitments and investments are vital to make the health-related SDGs within reach of all populations. Copyright The Authors. Published by Elsevier Ltd. This is an Open Access article published under the CC BY 4.0 license. ; Peer reviewed
In: Fullman , N , Barber , R M , Abajobir , A A , Abate , K H , Abbafati , C , Abbas , K M , Abd-Allah , F , Abdulle , A M , Abera , S F , Aboyans , V , Abu-Raddad , L J , Abu-Rmeileh , N M E , Adedeji , I A , Adetokunboh , O , Afshin , A , Agrawal , A , Agrawal , S , Kiadaliri , A A , Ahmadieh , H , Ahmed , M B , Aichour , A N , Aichour , I , Aichour , M T E , Aiyar , S , Akinyemi , R O , Akseer , N , Al-Aly , Z , Alam , K , Alam , N , Alasfoor , D , Alene , K A , Alizadeh-Navaei , R , Alkerwi , A , Alla , F , Allebeck , P , Allen , C , Al-Raddadi , R , Alsharif , U , Altirkawi , K A , Alvis-Guzman , N , Amare , A T , Amini , E , Ammar , W , Antonio , C A T , Ansari , H , Anwari , P , Arora , M , Berhe , D F , Hoek , H W , van Boven , J F M & GBD 2016 SDG Collaborators 2017 , ' Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries : An analysis from the Global Burden of Disease Study 2016 ' , The Lancet , vol. 390 , no. 10100 , pp. 1423-1459 . https://doi.org/10.1016/S0140-6736(17)32336-X ; ISSN:0140-6736
Background The UN's Sustainable Development Goals (SDGs) are grounded in the global ambition of "leaving no one behind". Understanding today's gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990-2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030. Methods We used standardised GBD 2016 methods to measure 37 health-related indicators from 1990 to 2016, an increase of four indicators since GBD 2015. We substantially revised the universal health coverage (UHC) measure, which focuses on coverage of essential health services, to also represent personal health-care access and quality for several non-communicable diseases. We transformed each indicator on a scale of 0-100, with 0 as the 2.5th percentile estimated between 1990 and 2030, and 100 as the 97.5th percentile during that time. An index representing all 37 health-related SDG indicators was constructed by taking the geometric mean of scaled indicators by target. On the basis of past trends, we produced projections of indicator values, using a weighted average of the indicator and country-specific annualised rates of change from 1990 to 2016 with weights for each annual rate of change based on out-of-sample validity. 24 of the currently measured health-related SDG indicators have defined SDG targets, against which we assessed attainment. Findings Globally, the median health-related SDG index was 56.7 (IQR 31.9-66.8) in 2016 and country-level performance markedly varied, with Singapore (86.8, 95% uncertainty interval 84.6-88.9), Iceland (86.0, 84.1-87.6), and Sweden (85.6, 81.8-87.8) having the highest levels in 2016 and Afghanistan (10.9, 9.6-11.9), the Central African Republic (11.0, 8.8-13.8), and Somalia (11.3, 9.5-13.1) recording the lowest. Between 2000 and 2016, notable ...
BACKGROUND: The number of individuals living with dementia is increasing, negatively affecting families, communities, and health-care systems around the world. A successful response to these challenges requires an accurate understanding of the dementia disease burden. We aimed to present the first detailed analysis of the global prevalence, mortality, and overall burden of dementia as captured by the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016, and highlight the most important messages for clinicians and neurologists. METHODS: GBD 2016 obtained data on dementia from vital registration systems, published scientific literature and surveys, and data from health-service encounters on deaths, excess mortality, prevalence, and incidence from 195 countries and territories from 1990 to 2016, through systematic review and additional data-seeking efforts. To correct for differences in cause of death coding across time and locations, we modelled mortality due to dementia using prevalence data and estimates of excess mortality derived from countries that were most likely to code deaths to dementia relative to prevalence. Data were analysed by standardised methods to estimate deaths, prevalence, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs; computed as the sum of YLLs and YLDs), and the fractions of these metrics that were attributable to four risk factors that met GBD criteria for assessment (high body-mass index [BMI], high fasting plasma glucose, smoking, and a diet high in sugar-sweetened beverages). FINDINGS: In 2016, the global number of individuals who lived with dementia was 43·8 million (95% uncertainty interval [UI] 37·8-51·0), increased from 20.2 million (17·4-23·5) in 1990. This increase of 117% (95% UI 114-121) contrasted with a minor increase in age-standardised prevalence of 1·7% (1·0-2·4), from 701 cases (95% UI 602-815) per 100 000 population in 1990 to 712 cases (614-828) per 100 000 population in 2016. More women than men had dementia in 2016 (27·0 million, 95% UI 23·3-31·4, vs 16.8 million, 14.4-19.6), and dementia was the fifth leading cause of death globally, accounting for 2·4 million (95% UI 2·1-2·8) deaths. Overall, 28·8 million (95% UI 24·5-34·0) DALYs were attributed to dementia; 6·4 million (95% UI 3·4-10·5) of these could be attributed to the modifiable GBD risk factors of high BMI, high fasting plasma glucose, smoking, and a high intake of sugar-sweetened beverages. INTERPRETATION: The global number of people living with dementia more than doubled from 1990 to 2016, mainly due to increases in population ageing and growth. Although differences in coding for causes of death and the heterogeneity in case-ascertainment methods constitute major challenges to the estimation of the burden of dementia, future analyses should improve on the methods for the correction of these biases. Until breakthroughs are made in prevention or curative treatment, dementia will constitute an increasing challenge to health-care systems worldwide. FUNDING: Bill & Melinda Gates Foundation. ; AA received financial support from the Department of Science and Technology, Government of India, (New Delhi, India) through the INSPIRE Faculty program. MSBS received Australian Government Research and Training Program funding for post-graduates to study at the Australian National University (Canberra, ACT, Australia). FC acknowledges support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. EC is supported by an Australian Research Council Future fellowship (FT3 140100085). AK was supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII (General Branch Evaluation and Promotion of Health Research) and the European Regional Development fund (ISCIII-FEDER). MOO is supported by grant U54HG007479 from the National Institutes of Health. TCR is a member of the Alzheimer Scotland Dementia Research Centre (University of Edinburgh, Edinburgh, UK) and is supported by Alzheimer Scotland. RT-S was partly supported by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. TW acknowledges academic support from University of Rajarata (Mihintale, Sri Lanka). ; Sí
Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. Funding: Bill & Melinda Gates Foundation.
BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. FUNDING: Bill & Melinda Gates Foundation. ; Bill & Melinda Gates Foundation ; We acknowledge the funding and support of the Bill & Melinda Gates Foundation. AK was supported by the Miguel Servet contract, which was financed by the CP13/00150 and PI15/00862 projects integrated into the National Research, Development, and Implementation,and funded by the Instituto de Salud Carlos III General Branch Evaluation and Promotion of Health Research and the European Regional Development Fund (ERDF-FEDER). AMS is supported by the Egyptian Fulbright Mission Program. AF acknowledges the Federal University of Sergipe (Sergipe, Brazil). AA received financial assistance from the Indian Department of Science and Technology (New Delhi, India) through the INSPIRE faculty programme. AS is supported by Health Data Research UK. DJS is supported by the South African Medical Research Council. AB is supported by the Public Health Agency of Canada. SMSI received a senior research fellowship from the Institute for Physical Activity and Nutrition, Deakin University (Waurn Ponds, VIC, Australia), and a career transition grant from the High Blood Pressure Research Council of Australia. FP and CF acknowledge support from the European Union (FEDER funds POCI/01/0145/FEDER/007728 and POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia, and Ministério da Educação e Ciência) under the Partnership Agreements PT2020 UID/MULTI/04378/2013 and PT2020 UID/QUI/50006/2013. TB acknowledges financial support from the Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. AM of Imperial College London is grateful for support from the Northwest London National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research andCare and the Imperial NIHR Biomedical Research Centre. KD is funded by a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine (grant number 201900). PSA is supported by an Australian National Health and Medical Research Council Early Career Fellowship. RT-S was supported in part by grant number PROMETEOII/2015/021 from Generalitat Valenciana and the national grant PI17/00719 from ISCIII-FEDER. The Serbian part of this contribution (by MJ) has been co-financed with grant OI175014 from the Serbian Ministry of Education, Science and Technological Development; publication of results was not contingent upon the Ministry's approval. MMMSM acknowledges support from the Serbian Ministry of Education, Science and Technological Development (contract 175087). MM's research was supported by the NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust (London, UK) and King's College London. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, or the UK Department of Health. TWB was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt professor award, which was funded by the German Federal Ministry of Education and Research ; Sí
High-resolution estimates of HIV burden across space and time provide an important tool for tracking and monitoring the progress of prevention and control efforts and assist with improving the precision and efficiency of targeting efforts. We aimed to assess HIV incidence and HIV mortality for all second-level administrative units across sub-Saharan Africa. ; his work was primarily supported by the Bill & Melinda Gates Foundation (grant OPP1132415). Additionally, O Adetokunboh acknowledges the support of the Department of Science and Innovation, and National Research Foundation of South Africa. M Ausloos, A Pana, and C Herteliu are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, Executive Agency for Higher Education, Research, Development and Innovation Funding (Romania; project number PN-III-P4-ID-PCCF-2016-0084). T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. M J Bockarie is supported by the European and Developing Countries Clinical Trials Partnership. F Carvalho and E Fernandes acknowledge support from Portuguese national funds (Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior; UIDB/50006/2020, UIDB/04378/2020, and UIDP/04378/2020. K Deribe is supported by the Wellcome Trust (grant 201900/Z/16/Z) as part of his International Intermediate Fellowship. B-F Hwang was partially supported by China Medical University (CMU107-Z-04), Taichung, Taiwan. M Jakovljevic acknowledges support of the Serbia Ministry of Education Science and Technological Development (grant OI 175 014). M N Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Y J Kim was supported by the Research Management Centre, Xiamen University Malaysia, Malaysia, (XMUMRF/2020-C6/ITCM/0004). K Krishnan is supported by University Grants Commission Centre of Advanced Study, (CAS II), awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge National Institutes of Health and Fogarty International Cente (K43TW010716). I Landires is a member of the Sistema Nacional de Investigación, which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación, Panama. W Mendoza is a program analyst in population and development at the UN Population Fund Country Office in Peru, which does not necessarily endorse this study. M Phetole received institutional support from the Grants, Innovation and Product Development Unit, South African Medical Research Council. O Odukoya acknowledges support from the Fogarty International Center of the US National Institutes of Health (K43TW010704). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. O Oladimeji is grateful for the support from Walter Sisulu University, Eastern Cape, South Africa, the University of Botswana, Botswana, and the University of Technology of Durban, Durban, South Africa. J R Padubidri acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, India. G C Patton is supported by an Australian Government National Health and Medical Research Council research fellowship. P Rathi acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal India. A I Ribeiro was supported by National Funds through Fundação para a Ciência e Tecnologia, under the programme of Stimulus of Scientific Employment–Individual Support (CEECIND/02386/2018). A M Samy acknowledges the support of the Egyptian Fulbright Mission Program. F Sha was supported by the Shenzhen Social Science Fund (SZ2020C015) and the Shenzhen Science and Technology Program (KQTD20190929172835662). A Sheikh is supported by Health Data Research UK. N Taveira acknowledges partial funding by Fundação para a Ciência e Tecnologia, Portugal, and Aga Khan Development Network—Portugal Collaborative Research Network in Portuguese-speaking countries in Africa (332821690), and by the European and Developing Countries Clinical Trials Partnership (RIA2016MC-1615). C S Wiysonge is supported by the South African Medical Research Council. Y Zhang was supported by the Science and Technology Research Project of Hubei Provincial Department of Education (Q20201104) and Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control (OHIC2020Y01).Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations