Social Empowerment through Islamic Finance
In: Abubakar, M. (2020). Social Empowerment through Islamic Finance. In Rafay, A. (Ed.) Handbook of Research on Theory and Practice of Global Islamic Finance (Chapter 6: pp. 115-128). PA: IGI Global.
5 Ergebnisse
Sortierung:
In: Abubakar, M. (2020). Social Empowerment through Islamic Finance. In Rafay, A. (Ed.) Handbook of Research on Theory and Practice of Global Islamic Finance (Chapter 6: pp. 115-128). PA: IGI Global.
SSRN
Working paper
This study examines the effects of employee perception of performance appraisal and how it influences job satisfaction. The researcher developed a model to test the impact of perceptionof performance appraisal system on the staff of the Nassarawa Local Government, Kano State, Nigeria. Two hundred employees of different ages, age and educational status were sampled. An 18-question survey was divided into two parts: measures of perception of performance appraisal and job satisfaction. Correlation and regression were used to test the hypotheses. The results indicated that, there is a positive relationship between employee's perception of performance appraisal and theirjob satisfaction. Therefore, this study recommends managers increase positive performance appraisal ratings in their organizations. In addition, managers should reduce personal bias and consider changing and improving ratings instruments. Keywords: Perception of Performance Appraisal,Ratings, Job Satisfaction. ; ÖZ: Bu araştırma çalışanların performans değerlendirme algılarının, iş memnuniyetine etkilerini inceler. Nijerya'da Kano eyaleti Nassarawa ilçesi yerel yönetiminde çalışmakta olan personelin performans değerlendirme algılarını incelemek üzere 18 soruluk bir anket kullanılarak, farklı yaş ve eğitim gruplarına ayrılmış çalışanları temsil eden örnek nüfus üzerinden, hem performans değerlendirme algılarını, hem de iş memnuniyeti olmak üzere iki farklı veri toplanmıştır. Hipotezleri test etmek üzere korolasyon ve regresyon analizleri yapılmıştır. Sonuçlar göstermektedir ki, çalışanların performans değerlendirme algılarını ile iş memnuniyeti arasında positif bir ilişki mevcuttur. Bu sebeple, araştırma, yöneticilerin positif performans değerlendirme reytinglerini artırmalarını tavsiye etmekte ve aynı zamanda yöneticilerin kişisel ayırımcılığı azaltmaları ve reyting enstrümanlarını iyileştirmelerini önermektedir. AnahtarKelimeler: Performans Değerlendirme Algıları, Reytingler, İş Memnuniyeti. ; Master of Arts in Marketing Management. Thesis (M.A.)--Eastern Mediterranean University, Faculty of Business and Economics, Dept. of Business Administration, 2015. Supervisor: Assist. Prof. Dr. Mehmet İslamoğlu.
BASE
In: Journal of Islamic Finance Accountancy JOIFA, Band 5
SSRN
BACKGROUND: Artificial intelligence (AI) is fast becoming the tool of choice for scalable and reliable analysis of medical images. However, constraints in sharing medical data outside the institutional or geographical space, as well as difficulties in getting AI models and modeling platforms to work across different environments, have led to a "reproducibility crisis" in digital medicine. METHODS: This study details the implementation of a web platform that can be used to mitigate these challenges by orchestrating a digital pathology AI pipeline, from raw data to model inference, entirely on the local machine. We discuss how this federated platform provides governed access to data by consuming the Application Program Interfaces exposed by cloud storage services, allows the addition of user-defined annotations, facilitates active learning for training models iteratively, and provides model inference computed directly in the web browser at practically zero cost. The latter is of particular relevance to clinical workflows because the code, including the AI model, travels to the user's data, which stays private to the governance domain where it was acquired RESULTS: We demonstrate that the web browser can be a means of democratizing AI and advancing data socialization in medical imaging backed by consumer-facing cloud infrastructure such as Box.com. As a case study, we test the accompanying platform end-to-end on a large dataset of digital breast cancer tissue microarray core images. We also showcase how it can be applied in contexts separate from digital pathology by applying it to a radiology dataset containing COVID-19 computed tomography images. CONCLUSIONS: The platform described in this report resolves the challenges to the findable, accessible, interoperable, reusable stewardship of data and AI models by integrating with cloud storage to maintain user-centric governance over the data. It also enables distributed, federated computation for AI inference over those data and proves the viability of client-side AI ...
BASE
In: https://www.repository.cam.ac.uk/handle/1810/256019
Automated methods are needed to facilitate high-throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large-scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37-0.87) and study (kappa range = 0.39-0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p-value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000-4,500 cells: kappa = 0.78) than those with lower counts (50-500 cells: kappa = 0.41; p-value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre- and post-analytical quality control procedures are necessary in order to ensure satisfactory performance. ; ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009-4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. CNIO-BCS was supported by the Genome Spain Foundation, the Red Tematica de Investigacion Cooperativa en Cancer and grants from the Asociacion Espaola Contra el Cancer and the Fondo de Investigacion Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The ESTHER study was supported by a grant from the Baden Wurttemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab. kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 106332, 108253, 108419], the Hamburg Cancer Society, the German Cancer Research Center (DKFZ) and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402]. The MCBCS was supported by an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, the Mayo Clinic Breast Cancer Registry and a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. ORIGO authors thank E. Krol-Warmerdam, and J. Blom; The contributing studies were funded by grants from the Dutch Cancer Society (UL1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). SEARCH is funded by programme grant from Cancer Research UK [C490/A10124. C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. Part of this work was supported by the European Community's Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009223175) (COGS). The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. We acknowledge funds from Breakthrough Breast Cancer, UK, in support of MGC at the time this work was carried out and funds from the Cancer Research, UK, in support of MA. ; This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/cjp2.42
BASE