AbstractCopper oxide nanoparticles (CuONPs) have a wide range of uses in agricultural applications. Nanocurcumin (NCur) acts as an antioxidant treatment. The goal of the study is to reduce the toxicity resulting from the use of CuONPs as nanopesticides on living organisms by inducing changes in the morphological shape of CuONPs or treating it with NCur. So, we induced a comparative study between three shapes of CuONPs: CuO nanosphere (CuONSp), CuO nanosheet (CuONS), and CuO nanoflower (CuONF). We characterize each nano-form by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (HRTEM), and Zetasizer HT device; 36 rats were divided into six groups (n = 6): 1st group was the control group; 2nd group received 50 mg/kg/day of NCur orally for 30 days; 3rd, 4th, and 5th groups received orally 50 mg/kg/day of CuONSp, CuONS, and CuONF, respectively, for 30 days; 6th group received 50 mg/kg/day CuONSp plus 50 mg/kg/day of NCur orally for 30 days. An elevation occurred in malondialdehyde (MDA), liver and kidney functions, tumor necrosis factor-alpha (TNF-α), and B-cell lymphoma 2 (Bcl2) by CuONSp > CuONS > CuONF, respectively. An inhibition occurred in glutathione (GSH), superoxidase (SOD) catalase (CAT), apoptotic Bax gene (Bax), histopathological, and ultrastructural alterations by CuONSp < CuONS < CuONF, respectively. NCur ameliorated these alternations. In conclusion, CuONF is a better form compared to other forms of nanopesticide in agriculture due to its lower toxicity. NCur decreased the biological alternations which induced by CuONSp due to its antioxidant and anti-apoptotic properties. Graphical Abstract
AbstractMethotrexate (MTX) and azathioprine (AZA) are chemotherapeutic, immunosuppressive, cytotoxic drugs with reported adverse effects, including oxidative damage to testis. This study aims to evaluate the potential effect of grape seed extract (GSE; gervital) to prevent testicular damage caused by MTX and AZA. Male albino rats were separated into six groups: group I, normal control group; group II, GSE (150 mg/kg/day); group III, MTX (8 mg/kg/week); group IV, AZA (15 mg/kg/day); group V, GSE (150 mg/kg/day) + MTX (8 mg/kg/week); group VI, GSE (150 mg/kg/day) + AZA (15 mg/kg/day). All rats were sacrificed, blood samples were obtained for testosterone analysis, and testis was removed for histological and ultrastructural studies and oxidation measurements. A reduction in relative body and testis weight, along with a significant decrease in testosterone levels, was observed. Histopathological and ultrastructural alterations induced by MTX or AZA included reduced spermatozoa, sloughing, marked reduction of spermatogenic cells, and pyknosis of some nuclei. Significant oxidative stress manifested as reduced glutathione (GSH) levels and catalase (CAT) and superoxide dismutase (SOD) activities, as well as increased malondialdehyde (MDA) levels. GSE administration showed an ameliorative effect on testosterone levels and histopathological and ultrastructural changes. GSE treatment also suppressed the increases in MDA levels and the decreases in GSH levels and CAT and SOD activities. In conclusion, these findings confirm that GSE is an effective antioxidant that protects testis from histopathological and ultrastructural damage induced by MTX and AZA. Therefore, GSE is a promising candidate for future use to minimize and alleviate MTX and AZA risks. Graphical abstract