Type A Behavior and Social Support among Employed Women
In: Behavioral medicine, Band 19, Heft 4, S. 169-173
ISSN: 1940-4026
14 Ergebnisse
Sortierung:
In: Behavioral medicine, Band 19, Heft 4, S. 169-173
ISSN: 1940-4026
In: Evaluation review: a journal of applied social research, Band 7, Heft 3, S. 303-320
ISSN: 1552-3926
This article reviews procedural and methodological characteristics of 121 outcome studies published by community mental health centers during the decade 1969-1979. These studies were compared with 2906 studies conducted at other mental health treatment sites. Attention is focused on the adequacy of description of sample characteristics, mental health condition treated and treatment or intervention employed, sophistication of study design, and quality of outcome measures. The findings suggest that CMHC studies are less precise and less rigorous than studies at other sites, although there appears to be consistent improvement in research quality over time. The findings raise the question of whether CMHCs generally should conduct high-level outcome research, aside from essential internal program monitoring. A feasible alternative may befor such research to be carried out at a few centers of mental health research excellence and for such findings to be disseminated to the mental health community at large.
In: Evaluation review: a journal of applied social research, Band 7, Heft 3, S. 303-320
ISSN: 0193-841X, 0164-0259
In: Knowledge: creation, diffusion, utilization, Band 6, Heft 3, S. 225-248
In a previous study it was found that mental health professionals working within community mental health centers (CMHCs) value published social science research as input into the policy decision-making process, yet frequently experience problems in accessing such literature in a timely and efficient manner. The current study was undertaken in order to determine whether access barriers could be reduced via the use of computer-based literature searching. Both short-term (six week) and long-term (six month)follow-up data revealed substantial use of the search materials for both conceptual and instrumental purposes. Further, the positive experiences reported with regard to the study-specific search were mirrored in a more general assessment of the potential usefulness of such information-retrieval systems in meeting future information needs.
In: Knowledge: creation, diffusion, utilization, Band 5, Heft 1, S. 41-55
Previous research has documented the fact that policy makers underutilize social science research literature in shaping their decisions. The two factors most often identified as accounting for this utilization gap are quality of research and organizational/political constraints. A third factor that has received relatively less attention is barriers to accessing relevant literature. To determine the importance ofaccessproblems among mental health professionals, a national sample (N = 367) of community mental health center (CMHC) executives was surveyed regarding attitudes and practices with respect to published social science research. Thefindings revealed that CMHC policy makers (1) consider published literature as important relative to other sources of information; (2) have difficulty accessing desired information via traditional means (e.g., personal and institutional librariesf, and (3) are generally unfamiliar with currently available information accessing technologies (i.e., computer-based bibliographic retrieval systems). Thesefindings suggest the need for greater emphasis on access barriers in a model predicting utilization of social science research in mental health policy formulation.
In: Public health genomics, Band 21, Heft 1-2, S. 27-36
ISSN: 1662-8063
<b><i>Background:</i></b> Residual tissue samples, i.e., samples excised for diagnosis or during treatment, are commonly used for medical research. In the Netherlands, they can be used provided the patient did not opt out of this use. Previous research has shown that recall of the informed consent procedure for tissue use is poor. Here, we investigate recall of three consent procedures: informed consent, opt-out, and opt-out plus (an opt-out procedure with an information procedure similar to that of informed consent). <b><i>Methods:</i></b> Patients (<i>n</i> = 1,319) with a variety of diseases were randomized into three trial arms: informed consent, opt-out plus, and opt-out. Questionnaires were administered 6 weeks and 6 months after randomization. <b><i>Results:</i></b> Six hundred and seventy-three and 553 patients returned the 6-week and 6-month questionnaire, respectively. In the informed consent arm, recall of having received a brochure (55.3%) or oral information (69.4%) was similar to that in the opt-out plus arm (48.5 and 71.6%, respectively), at the 6-week assessment. Significantly more respondents in the informed consent and the opt-out plus arms versus the opt-out arm recalled that they had been informed about being able to control tissue use and which consent procedure they had experienced (6-week questionnaire range 53.2–75.8 vs. 13.9–16.1%; 6-month questionnaire range 43.5–84.2 vs. 3.2–35.4%). There were no significant differences between the informed consent and opt-out plus arms in this regard. <b><i>Conclusions:</i></b> Recall of the consent procedure was similar in opt-out plus and informed consent procedures. Overall, recall was moderate, indicating that there is room for improvement in the quality of information provision.
Sistemes sanitaris europeus; Missió del càncer; Política científica ; Sistemas sanitarios europeos; Misión del cáncer; Política científica ; European healthcare systems; Cancer mission; Science policy ; A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research–care–prevention continuum has the potential to achieve in 2030 a 10-year cancer-specific survival for 75% of patients diagnosed in European Union (EU) member states with a well-developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high-quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science-driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC-like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long-term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans-border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence-based advice.
BASE
In: BioSocieties: an interdisciplinary journal for social studies of life sciences, Band 6, Heft 4, S. 466-486
ISSN: 1745-8560
Acknowledgments The Multi-Attribute Utility in Cancer (MAUCa) Consortium, in addition to those named as authors, consists of the following members, all of whom made some contribution to the research reported in this paper, as outlined above: John Brazier, David Cella, Stein Kaasa, Georg Kemmler, Helen McTaggart-Cowan, Richard Norman, Stuart Peacock, Simon Pickard, Neil Scott, Martin Stockler, and Deborah Street. This research was supported by a National Health and Medical Research Council (NHMRC; Australia) Project Grant (632662). Monika Janda is supported by an NHMRC career development award 1045247. Professor King is supported by the Australian Government through Cancer Australia. ; Peer reviewed ; Publisher PDF
BASE
This research was funded by the National Health and Medical Research Council of Australia (Project Grant 632662). Dr Norman was supported by a NHMRC Early Career Research Fellowship (1069732). Professor King was supported by the Australian Government through Cancer Australia. ; Peer reviewed ; Publisher PDF
BASE
A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research–care–prevention continuum has the potential to achieve in 2030 a 10‐year cancer‐specific survival for 75% of patients diagnosed in European Union (EU) member states with a well‐developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high‐quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science‐driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC‐like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long‐term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans‐border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence‐based advice.
BASE
A comprehensive translational cancer research approach focused on personalized and precision medicine, and covering the entire cancer research-care-prevention continuum has the potential to achieve in 2030 a 10-year cancer-specific survival for 75% of patients diagnosed in European Union (EU) member states with a well-developed healthcare system. Concerted actions across this continuum that spans from basic and preclinical research through clinical and prevention research to outcomes research, along with the establishment of interconnected high-quality infrastructures for translational research, clinical and prevention trials and outcomes research, will ensure that science-driven and social innovations benefit patients and individuals at risk across the EU. European infrastructures involving comprehensive cancer centres (CCCs) and CCC-like entities will provide researchers with access to the required critical mass of patients, biological materials and technological resources and can bridge research with healthcare systems. Here, we prioritize research areas to ensure a balanced research portfolio and provide recommendations for achieving key targets. Meeting these targets will require harmonization of EU and national priorities and policies, improved research coordination at the national, regional and EU level and increasingly efficient and flexible funding mechanisms. Long-term support by the EU and commitment of Member States to specialized schemes are also needed for the establishment and sustainability of trans-border infrastructures and networks. In addition to effectively engaging policymakers, all relevant stakeholders within the entire continuum should consensually inform policy through evidence-based advice.
BASE
Funder: Victorian Cancer Agency ; Funder: NIHR Manchester Biomedical Research Centre ; Funder: Cancer Research UK ; Funder: Cancer Council Tasmania ; Funder: Instituto de Salud Carlos III ; Funder: Cancer Australia ; Funder: NIHR Oxford Biomedical Research Centre ; Funder: Fundación Científica de la Asociación Española Contra el Cáncer ; Funder: Cancer Council South Australia ; Funder: Swedish Cancer Society ; Funder: NIHR Cambridge Biomedical Research Centre ; Funder: Institut Català de la Salut ; Funder: Cancer Council Victoria ; Funder: Prostate Cancer Foundation of Australia ; Funder: National Institutes of Health ; BACKGROUND: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS: The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS: Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION: After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING: Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer.
BASE
Publisher's version (útgefin grein). ; Background: Mutations in BRCA2 cause a higher risk of early-onset aggressive prostate cancer (PrCa). The IMPACT study is evaluating targeted PrCa screening using prostate-specific-antigen (PSA) in men with germline BRCA1/2 mutations. Objective: To report the utility of PSA screening, PrCa incidence, positive predictive value of PSA, biopsy, and tumour characteristics after 3 yr of screening, by BRCA status. Design, setting, and participants: Men aged 40–69 yr with a germline pathogenic BRCA1/2 mutation and male controls testing negative for a familial BRCA1/2 mutation were recruited. Participants underwent PSA screening for 3 yr, and if PSA > 3.0 ng/ml, men were offered prostate biopsy. Outcome measurements and statistical analysis: PSA levels, PrCa incidence, and tumour characteristics were evaluated. Statistical analyses included Poisson regression offset by person-year follow-up, chi-square tests for proportion t tests for means, and Kruskal-Wallis for medians. Results and limitations: A total of 3027 patients (2932 unique individuals) were recruited (919 BRCA1 carriers, 709 BRCA1 noncarriers, 902 BRCA2 carriers, and 497 BRCA2 noncarriers). After 3 yr of screening, 527 men had PSA > 3.0 ng/ml, 357 biopsies were performed, and 112 PrCa cases were diagnosed (31 BRCA1 carriers, 19 BRCA1 noncarriers, 47 BRCA2 carriers, and 15 BRCA2 noncarriers). Higher compliance with biopsy was observed in BRCA2 carriers compared with noncarriers (73% vs 60%). Cancer incidence rate per 1000 person years was higher in BRCA2 carriers than in noncarriers (19.4 vs 12.0; p = 0.03); BRCA2 carriers were diagnosed at a younger age (61 vs 64 yr; p = 0.04) and were more likely to have clinically significant disease than BRCA2 noncarriers (77% vs 40%; p = 0.01). No differences in age or tumour characteristics were detected between BRCA1 carriers and BRCA1 noncarriers. The 4 kallikrein marker model discriminated better (area under the curve [AUC] = 0.73) for clinically significant cancer at biopsy than PSA alone (AUC = 0.65). Conclusions: After 3 yr of screening, compared with noncarriers, BRCA2 mutation carriers were associated with a higher incidence of PrCa, younger age of diagnosis, and clinically significant tumours. Therefore, systematic PSA screening is indicated for men with a BRCA2 mutation. Further follow-up is required to assess the role of screening in BRCA1 mutation carriers. Patient summary: We demonstrate that after 3 yr of prostate-specific antigen (PSA) testing, we detect more serious prostate cancers in men with BRCA2 mutations than in those without these mutations. We recommend that male BRCA2 carriers are offered systematic PSA screening. © 2019 The Authors We demonstrate that after 3 yr of prostate-specific-antigen (PSA) testing, we detect more serious prostate cancers in men with BRCA2 mutations than those without these mutations. We recommend that male BRCA2 carriers are offered systematic PSA screening. ; We demonstrate that, after four annual PSA screening rounds, BRCA2 mutation carriers have a higher incidence of PrCa, are diagnosed at a younger age, and present with more clinically significant tumours than BRCA2 noncarriers. Further follow-up is required to assess the role of screening in BRCA1 mutation carriers. Therefore, these data support the use of systematic PSA screening in male BRCA2 carriers. Author contributions : Rosalind A. Eeles had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design : Aaronson, Ardern-Jones, Bancroft, Bangma, Castro, Dearnaley, Eccles, Evans, Eyfjord, Falconer, Foster, Gronberg, Hamdy, Johannsson, Khoo, Kote-Jarai, Lilja, Lindeman, Lubinski, Mahle, Mikropoulos, Mitra, Moynihan, Page, Rennert, Suri. Acquisition of data: All authors. Analysis and interpretation of data: All authors. Drafting of the manuscript: All authors. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis : Page, Bancroft, Brook, Assel, Vickers, Lilja. Obtaining funding : Eeles and all IMPACT collaborating sites obtained their own funding for running the study at their site. Administrative, technical, or material support: All authors. Supervision: Eeles. Other : None. Financial disclosures: Rosalind A. Eeles certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: Hans Lilja holds patents for intact PSA assays, and is named, along with Andrew J. Vickers, on a patent application for a statistical method to detect prostate cancer. The patents have been licensed and commercialised as the 4 Kscore by OPKO Health. Drs. Vickers and Lilja receive royalties from sales of this test. Additionally, Dr. Lilja owns stock and Dr. Vickers owns stock options in OPKO. Professor Rosalind Eeles: Royal Marsden Hospital—Nov 2017; support from Janssen; honorarium as speaker £1100; University of Chicago invited talk May 2018; honorarium as speaker Rosalind A. Eeles certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: Hans Lilja holds patents for intact PSA assays, and is named, along with Andrew J. Vickers, on a patent application for a statistical method to detect prostate cancer. The patents have been licensed and commercialised as the 4 Kscore by OPKO Health. Drs. Vickers and Lilja receive royalties from sales of this test. Additionally, Dr. Lilja owns stock and Dr. Vickers owns stock options in OPKO. Professor Rosalind Eeles: Royal Marsden Hospital—Nov 2017; support from Janssen; honorarium as speaker £1100; University of Chicago invited talk May 2018; honorarium as speaker $1000. The remaining authors have no other conflict of interest to declare.000. The remaining authors have no other conflict of interest to declare. Funding/Support and role of the sponsor : This research is coordinated by the Institute of Cancer Research, London, UK, and is supported by grants from Cancer Research UK (grant references C5047/A21332, C5047/A13232, and C5047/A17528) and the Ronald and Rita McAulay Foundation. Judith Offman is supported by Cancer Research UK Programme Grant reference C8161/A16892. Mr. and Mrs. Jack Baker are acknowledged for supporting the study in NorthShore University HealthSystem, Evanston, IL, USA and Myriad Genetics Laboratory, Salt Lake City, UT, USA, for providing research BRCA testing rates for NorthShore University HealthSystem patients. We acknowledge funding from the National Institute for Health Research (NIHR) to the Biomedical Research Center at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, at Manchester University Foundation Trust (IS-BRC-1215-20007), the Oxford Biomedical Research Centre Program, and the Cambridge Clinical Research Centre, NIHR Cambridge Biomedical Research Centre. We acknowledge that in Australia, this project was cofunded by Cancer Council Tasmania and Cancer Australia (grant number 1006349 [2011–2013]), Prostate Cancer Foundation of Australia (grant number PCFA PRO4 [2008]), Cancer Councils of Victoria and South Australia (grant number 400048 [2006–2008]), the Victorian Cancer Agency Clinical Trial Capacity CTCB08_14, Cancer Australia and Prostate Cancer Foundation of Australia (2014–2016; grant number 1059423), and Translational grants EOI09_50. The Association of International Cancer Research funded data collection in The Netherlands (AICR 10-0596). We acknowledge funding from the Basser Center for BRCA (to Susan Domchek). This work was supported in part by the National Institutes of Health/National Cancer Institute (NIH/NCI) with a Cancer Center Support Grant to Memorial Sloan Kettering Cancer Center (P30 CA008748), a SPORE grant in Prostate Cancer to Dr. H. Scher (P50-CA92629), the Sidney Kimmel Center for Prostate and Urologic Cancers, David H. Koch through the Prostate Cancer Foundation. This work was also supported in part by the NIHR Oxford Biomedical Research Centre Program in UK, the Swedish Cancer Society (CAN 2017/559), the Swedish Research Council (VR-MH project no. 2016-02974), and General Hospital in Malmö Foundation for Combating Cancer. We acknowledge funding from the Slovenian Research Agency, Research programme P3-0352. We thank CERCA Program/Generalitat de Catalunya for their institutional support. Elena Castro acknowledges funding from Prostate Cancer Foundation. We acknowledge the support of the Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad), "Fondo Europeo de Desarrollo Regional (FEDER), una manera de hacer Europa" (PI10/01422, PI13/00285, PIE13/00022, PI16/00563, JR18/00011 and CIBERONC), and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). We acknowledge funding support from Fundação para a Ciência e a Tecnologia to the IPO Porto study (project grant PTDC/DTP-PIC/1308/2014 to Manuel R. Teixeira and fellowship grant SFRH/BD/116557/2016 to Marta Cardoso). ; Peer Reviewed
BASE