Suchergebnisse
Filter
2449 Ergebnisse
Sortierung:
World Affairs Online
World Affairs Online
SSRN
Quantile regression in risk calibration
Die Quantilsregression untersucht die Quantilfunktion QY |X (τ ), sodass ∀τ ∈ (0, 1), FY |X [QY |X (τ )] = τ erfu ̈llt ist, wobei FY |X die bedingte Verteilungsfunktion von Y gegeben X ist. Die Quantilsregression ermo ̈glicht eine genauere Betrachtung der bedingten Verteilung u ̈ber die bedingten Momente hinaus. Diese Technik ist in vielerlei Hinsicht nu ̈tzlich: beispielsweise fu ̈r das Risikomaß Value-at-Risk (VaR), welches nach dem Basler Akkord (2011) von allen Banken angegeben werden muss, fu ̈r "Quantil treatment-effects" und die "bedingte stochastische Dominanz (CSD)", welches wirtschaftliche Konzepte zur Messung der Effektivit ̈at einer Regierungspoli- tik oder einer medizinischen Behandlung sind. Die Entwicklung eines Verfahrens zur Quantilsregression stellt jedoch eine gro ̈ßere Herausforderung dar, als die Regression zur Mitte. Allgemeine Regressionsprobleme und M-Scha ̈tzer erfordern einen versierten Umgang und es muss sich mit nicht- glatten Verlustfunktionen besch ̈aftigt werden. Kapitel 2 behandelt den Einsatz der Quantilsregression im empirischen Risikomanagement w ̈ahrend einer Finanzkrise. Kapitel 3 und 4 befassen sich mit dem Problem der h ̈oheren Dimensionalit ̈at und nichtparametrischen Techniken der Quantilsregression. ; Quantile regression studies the conditional quantile function QY|X(τ) on X at level τ which satisfies FY |X QY |X (τ ) = τ , where FY |X is the conditional CDF of Y given X, ∀τ ∈ (0,1). Quantile regression allows for a closer inspection of the conditional distribution beyond the conditional moments. This technique is par- ticularly useful in, for example, the Value-at-Risk (VaR) which the Basel accords (2011) require all banks to report, or the "quantile treatment effect" and "condi- tional stochastic dominance (CSD)" which are economic concepts in measuring the effectiveness of a government policy or a medical treatment. Given its value of applicability, to develop the technique of quantile regression is, however, more challenging than mean regression. It is necessary to be adept with general regression problems and M-estimators; additionally one needs to deal with non-smooth loss functions. In this dissertation, chapter 2 is devoted to empirical risk management during financial crises using quantile regression. Chapter 3 and 4 address the issue of high-dimensionality and the nonparametric technique of quantile regression.
BASE
SSRN
Working paper
SSRN
Working paper
Quantile Regression in Risk Calibration
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a stressful situation for one market participant, one likes to measure how this stress affects other factors. The CoVaR (Conditional VaR) framework has been developed for this purpose. The basic technical elements of CoVaR estimation are two levels of quantile regression: one on market risk factors; another on individual risk factor. Tests on the functional form of the two-level quantile regression reject the linearity. A flexible semiparametric modeling framework for CoVaR is proposed. A partial linear model (PLM) is analyzed. In applying the technology to stock data covering the crisis period, the PLM outperforms in the crisis time, with the justification of the backtesting procedures. Moreover, using the data on global stock markets indices, the analysis on marginal contribution of risk (MCR) defined as the local first order derivative of the quantile curve sheds some light on the source of the global market risk.
BASE
Quantile regression in risk calibration
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a stressful situation for one market participant, one likes to measure how this stress affects other factors. The CoVaR (Conditional VaR) framework has been developed for this purpose. The basic technical elements of CoVaR estimation are two levels of quantile regression: one on market risk factors; another on individual risk factor. Tests on the functional form of the two-level quantile regression reject the linearity. A flexible semiparametric modeling framework for CoVaR is proposed. A partial linear model (PLM) is analyzed. In applying the technology to stock data covering the crisis period, the PLM outperforms in the crisis time, with the justification of the backtesting procedures. Moreover, using the data on global stock markets indices, the analysis on marginal contribution of risk (MCR) defined as the local first order derivative of the quantile curve sheds some light on the source of the global market risk.
BASE
Nonstationary Nonlinear Quantile Regression
SSRN
Working paper
Factorisable Multitask Quantile Regression
SSRN
Working paper
Factorisable Multitask Quantile Regression
SSRN
Working paper
Quantile regression for spatial data
In: SpringerBriefs in Regional Science
Quantile regression analysis differs from more conventional regression models in its emphasis on distributions. Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes for the entire distribution of the dependent variable. Despite its advantages, quantile regression is still not commonly used in the analysis of spatial data. The objective of this book is to make quantile regression procedures more accessible for researchers working with spatial data sets. The emphasis is on interpretation of quantile regression results. A series of examples using both simulated and actual data sets shows how readily seemingly complex quantile regression results can be interpreted with sets of well-constructed graphs. Both parametric and nonparametric versions of spatial models are considered in detail.
Quantile regression : a penalization approach
Sparse group LASSO (SGL) is a penalization technique used in regression problems where the covariates have a natural grouped structure and provides solutions that are both between and within group sparse. In this paper the SGL is introduced to the quantile regression (QR) framework, and a more flexible version, the adaptive sparse group LASSO (ASGL), is proposed. This proposal adds weights to the penalization improving prediction accuracy. Usually, adaptive weights are taken as a function of the original non-penalized solution model. This approach is only feasible in the n > p framework. In this work, a solution that allows using adaptive weights in high-dimensional scenarios is proposed. The benefits of this proposal are studied both in synthetic and real datasets. ; In this research we have made use of Uranus, a supercomputer cluster located at University Carlos III of Madrid and funded jointly by EU-FEDER funds and by the Spanish Government via the National Projects No. UNC313-4E- 2361, No. ENE2009-12213- C03-03, No. ENE2012-33219 and No. ENE2015- 68265-P. This research was partially supported by research grants and Project ECO2015-66593-P from Ministerio de Economía, Industria y Competitividad, Project MTM2017-88708-P from Ministerio de Economía y Competi- tividad, FEDER funds and Project IJCI-2017-34038 from Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades.
BASE
Quantile Regression with Generated Regressors
SSRN
Working paper