Practical handbook of material flow analysis
In: Advanced methods in resource and waste management series 1
1044386 Ergebnisse
Sortierung:
In: Advanced methods in resource and waste management series 1
In: Journal of social sciences: interdisciplinary reflection of contemporary society, Band 1, Heft 3, S. 187-200
ISSN: 2456-6756
In: Waste management: international journal of integrated waste management, science and technology, Band 24, Heft 10, S. 1005-1021
ISSN: 1879-2456
In: Journal of Industrial Ecology, Band 21, Heft 1, S. 16-25
SSRN
In: Journal of Industrial Ecology, Band 21, Heft 5, S. 1237-1249
SSRN
In: Waste management: international journal of integrated waste management, science and technology, Band 29, Heft 5, S. 1602-1614
ISSN: 1879-2456
In: Werkstattstechnik: wt, Band 107, Heft 3, S. 129-133
ISSN: 1436-4980
Die Materialflussanalyse ist eine Methode zur Identifikation von Schwachstellen im Materialfluss. Die Methode ist jedoch aufgrund hoher manueller Aufwände bei der Datenerfassung und -aufbereitung nur beschränkt in der hochvarianten Montage einsetzbar, welche aus einer Vielzahl an Bauteilen und Prozessen besteht. Die automatisierte Ableitung und Visualisierung von Materialflüssen aus ERP (Enterprise Resource Planning)-Transportaufträgen ermöglicht eine kontinuierliche Materialflussanalyse zur Verbesserung des Materialflusses.
Material flow analysis is a method for identifying weakpoints in the material flow. Due to the high number of components and processes in the high-mix model assembly line, the method is limited due the high effort in collecting and preparing data. An automated approach to derive and visualize material flows using transport orders enables a continuous material flow analysis to improve the material flow.
International audience ; This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
International audience ; This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
International audience ; This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
International audience ; This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
International audience ; This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
This paper explores flows and stocks, at the scale of the European Union, of certain rare earth elements (REEs; Pr, Nd, Eu, Tb, Dy and Y) which are associated with products that are important for the decarbonisation of the energy sector and that also have strong recycling potential. Material flow analyses were performed considering the various steps along the value chain (separation of rare earth oxides, manufacture of products, etc.) and including the lithosphere as a potential stock (potential geological resources). Results provide estimates of flows of rare earths into use, in-use stocks and waste streams. Flows into use of, e.g., Tb in fluorescent lamp phosphors, Nd and Dy in permanent magnets and Nd in battery applications were estimated, for selected reference year 2010, as 35, 1230, 230 and 120 tons respectively. The proposed Sankey diagrams illustrate the strong imbalance of flows of permanent magnet REEs along the value chain, with Europe relying largely on the import of finished products (magnets and applications). It is estimated that around 2020, the amounts of Tb in fluorescent lamps and Nd in permanent magnets recycled each year in Europe, could be on the order of 10 tons for Tb and between 170 and 230 tons for Nd.
BASE
In: Journal of Industrial Ecology, Band 11, Heft 4, S. 50-63
SSRN
In: RECYCL-D-22-04677
SSRN