Entropy Production Associated with Magnetohydrodynamics (Mhd) Thermo-Solutal Natural Convection of Non-Newtonian Mwcnt-Sio2-Eg Hybrid Nano-Coolant
In: HELIYON-D-23-59508
21 Ergebnisse
Sortierung:
In: HELIYON-D-23-59508
SSRN
Waves in the solar corona have been investigated for many years, as a potential coronal heating mechanism and in the context of coronal seismology, and they play an important role in our understanding of the solar corona. In this thesis, we present the results of numerical simulations of transverse MHD waves in coronal loops. In a first study, we consider an atmospheric model for a coronal loop where the chromosphere is included as a simple mass reservoir and the effects of gravity, thermal conduction and optically thin radiation are taken into account, and we investigate the dissipation of phase-mixed, driven Alfvén waves and the subsequent heating and evaporation from the lower atmosphere. It has been argued that this evaporation can significantly affect the transverse density profile in the boundary of the loop, thereby changing the Alfvén speed gradient and the phase mixing process. We analyse the heating from the phase-mixed Alfvén waves and the evaporation and find that in our setup, with a high-frequency driver, the effect of the evaporation on the phase mixing process is negligible as a significant amount of the wave energy in the corona is lost to the lower atmosphere. Waves usually originate in the lower parts of the solar atmosphere, where the convective motions beneath the photosphere shuffle the magnetic field around, and they are then transmitted into the corona. However, recent observations have shown that transverse MHD waves can also be generated in-situ in the corona, by the collision of counter-propagating plasma clumps (coronal rain). When falling down, these coronal rain clumps can collide with upflows or other coronal rain clumps, and generate transverse oscillations. In order to investigate this mechanism, we develop a 2D model for the collision of counter-propagating plasma clumps based on detailed observations and statistical analysis of these events and study the generation of transverse MHD waves. We first study the relationship between various physical parameters of the clumps and the resulting oscillations and subsequently apply the model using observed coronal rain properties and investigate the likelihood of collisions and oscillations in coronal loops. In our simulations, we find that the properties of the oscillations are linked to the properties of the counter-propagating clumps, but also that coronal rain collisions and oscillations are rather unlikely in active region loops, due to the relatively large background pressure and magnetic field strength. ; "The research leading to the results presented within this thesis has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K0009 50/1), the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214) and the Research Council of Norway through its Centres of Excellence scheme, project number 262622." -- Financial Support
BASE
In: HELIYON-D-23-05684
SSRN
In: Iraqi journal of science, S. 2714-2725
ISSN: 0067-2904
This paper discusses Ree–Eyring fluid's peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.
| openaire: EC/H2020/818665/EU//UniSDyn Funding Information: Acknowledgements. MJK acknowledges the support of the Academy of Finland ReSoLVE Centre of Excellence (grant No. 307411). AP was funded by the International Max Planck Research School for Solar System Science at the University of Göttingen. This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation programme (project "UniSDyn", grant agreement n:o 818665). SOLIS data used here are produced cooperatively by NSF/NSO and NASA/LWS. Publisher Copyright: © A. P. Prabhu et al. 2021. ; Context. Obtaining observational constraints on the role of turbulent effects for the solar dynamo is a difficult, yet crucial, task. Without such knowledge, the full picture of the operation mechanism of the solar dynamo cannot be formed. Aims. The magnetic helicity spectrum provides important information about the α effect. Here we demonstrate a formalism in spherical geometry to infer magnetic helicity spectra directly from observations of the magnetic field, taking into account the sign change of magnetic helicity across the Sun's equator. Methods. Using an angular correlation function of the magnetic field, we develop a method to infer spectra for magnetic energy and helicity. The retrieval of the latter relies on a fundamental definition of helicity in terms of linkage of magnetic flux. We apply the two-scale approach, previously used in Cartesian geometry, to spherical geometry for systems where a sign reversal of helicity is expected across the equator on both small and large scales. Results. We test the method by applying it to an analytical model of a fully helical field, and to magneto-hydrodynamic simulations of a turbulent dynamo. The helicity spectra computed from the vector potential available in the models are in excellent agreement with the spectra computed solely from the magnetic field using our method. In a next test, we use our method to obtain the helicity spectrum from a synoptic magnetic field map corresponding to a Carrington rotation. We observe clear signs of a bihelical spectrum of magnetic helicity, which is in complete accordance to the previously reported spectra in literature from the same map. Conclusions. Our formalism makes it possible to infer magnetic helicity in spherical geometry, without the necessity of computing the magnetic vector potential. It has many applications in solar and stellar observations, but can also be used to analyse global magnetoconvection models of stars and to compare them with observations. ; Peer reviewed
BASE
In: Acta polytechnica: journal of advanced engineering, Band 61, Heft 2, S. 324-335
ISSN: 1805-2363
The use of solar-heated liquid metal in a magnetohydrodynamics (MHD) generator provides an alternative and direct conversion method for electric power generation. This prompted the present study to conduct a three-dimensional numerical analysis for a liquid Ga68In20Sn12 flow exposed to several uniform magnetic field intensities (Bo of 0.5 T, 1T and, 1.41 T) within a disk channel geometric boundary. The aim is to study the influence of the external magnetic fields on the generator performance and the fluid flow stability at a high Reynolds number (Re) and Hartmann number (Ha) using the Ansys Fluent software. The simulation results show that at Re of ≈ 2.44e6, the fluid velocity decreases inside the generator regardless of Bo. When Bo of 1T and 1.41T are applied, the velocity magnitude decreases and spreads within the disk channel and walls due to high Ha values (5874 and 8282). The fluid pressure increases from the nozzle pipe inlet to the disk channel and decreases towards the outlet. The induced current density in the radial direction, jx, increases within the disk channel and near the inner electrode edge as Bo increases. A significant observation is that the current densities obtained for Bo of 1T and 1.41T cases are higher than in other cases. The numerical analysis obtained in this study showed that the Bo of either 1T or 1.41T is needed to achieve the required flow stability, current density, and output powers.
This is the second of a series of two papers that deepen our understanding of the transversal structure and the properties of recollimation shocks of axisymmetric, relativistic, superfast magnetosonic, overpressured jets. They extend previous work that characterized these properties in connection with the dominant type of energy (internal, kinetic, or magnetic) in the jet to models with helical magnetic fields with larger magnetic pitch angles and force-free magnetic fields. In the first paper of this series, the magnetohydrodynamical models were computed following an approach that allows studying the structure of steady, axisymmetric, relativistic (magnetized) flows using one-dimensional time-dependent simulations. In this paper, synthetic radio images of the magnetohydrodynamical models are produced based on two different models to connect the thermal particle population, modeled by the hydrodynamical code, and the nonthermal particle population (added in post-processing) that causes the synchrotron radiation. The role of the magnetic tension and the Lorentz force in modeling the observational appearance of jets, namely the cross-section emission asymmetries, spine brightening, relative intensity of the knots, and polarized emission is analyzed. A cross-section emission asymmetry caused by a differential change in the angle between the helical magnetic field and the line of sight across the jet width is observed in all models and for both synchrotron emission approximations, as expected from a purely geometrical origin, for viewing angles < 10°. Models with the highest magnetizations and/or magnetic pitch angles lead to an uneven distribution of the internal energy as a consequence of the larger relative magnetic tension and radial Lorentz force, which translates into a spine brightening in the total and linearly polarized intensity maps. Force-free models display a distinct spine brightening that originates in the radial gradient of the axial magnetic field. Highly magnetized jets with large toroidal fields tend to have weaker shocks and correspondingly weaker radio knots. Signatures of this toroidal field can be found in the linearly polarized synchrotron emission for jets with large enough magnetic pitch angles and large enough viewing angles. © ESO 2021. ; AF and JLG acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (grants AYA2016-80889-P, PID2019-108995GB-C21), the Consejería de Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucía (grant P18-FR-1769), the Consejo Superior de Investigaciones Científicas (grant 2019AEP112), and the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). JMM and MP acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (grant AYA2016-77237-C3-3-P), the Spanish Ministerio de Ciencia (PID2019-107427GB-C33), and from the local Autonomous Government (Generalitat Valenciana, grant PROME-TEO/2019/071). JMM acknowledges further financial support from the Spanish Ministerio de Economía y Competitividad (grant PGC2018-095984-B-I00). MP acknowledges further financial support from the Spanish Ministerio de Ciencia through grant PID2019-105510GB-C31. This research made use of Python (http://www.python.org), Numpy (van der Walt et al. 2011), Pandas (McKinney et al. 2010), and Matplotlib (Hunter 2007). We also made use of Astropy (http://www.astropy.org), a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018). ; Peer reviewed
BASE
This is the first of a series of two papers that deepen our understanding of the transversal structure and the properties of recollimation shocks of axisymmetric, relativistic, superfast magnetosonic, overpressured jets. They extend previous work that characterized these properties in connection with the dominant type of energy (internal, kinetic, or magnetic) in the jet to models with helical magnetic fields with larger magnetic pitch angles and force-free magnetic fields. In this paper, the magnetohydrodynamical models were computed following an approach that allows studying the structure of steady, axisymmetric, relativistic (magnetized) flows using one-dimensional time-dependent simulations. In these approaches, the relevance of the magnetic tension and of the Lorentz force in shaping the internal structure of jets (transversal structure, radial oscillations, and internal shocks) is discussed. The radial Lorentz force controls the jet internal transversal equilibrium. Hence, highly magnetized non-force-free jets exhibit a thin spine of high internal energy around the axis. The properties of the recollimation shocks and sideways expansions and compressions of the jet result from the total pressure mismatch at the jet surface, which among other factors depends on the magnetic tension and the magnetosonic Mach number of the flow. Hot jets with low Mach number tend to have strong oblique shocks and wide radial oscillations. Highly magnetized jets with large toroidal fields tend to have weaker shocks and radial oscillations of smaller amplitude. In the second paper, we present synthetic synchrotron radio images of the magnetohydrodynamical models that are produced at a post-processing phase, focusing on the observational properties of the jets, namely the top-down emission asymmetries, spine brightening, the relative intensity of the knots, and polarized emission. © ESO 2021. ; JMM and MP acknowledge financial support from the Spanish Ministerio de Economia y Competitividad (grant AYA2016-77237-C33-P), the Spanish Ministerio de Ciencia (PID2019-107427GB-C33), and from the local Autonomous Government (Generalitat Valenciana, grant PROMETEO/2019/071). JMM acknowledges further financial support from the Spanish Ministerio de Economia y Competitividad (grant PGC2018-095984-B-I00). MP acknowledges further financial support from the Spanish Ministerio de Ciencia through grant PID2019-105510GB-C31. AF and JLG acknowledge financial support from the Spanish Ministerio de Economia y Competitividad (grants AYA2016-80889-P, PID2019-108995GB-C21), the Consejeria de Economia, Conocimiento, Empresas y Universidad of the Junta de Andalucia (grant P18-FR-1769), the Consejo Superior de Investigaciones Cientificas (grant 2019AEP112), and the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709). This research made use of Python (http://www.python.org), Numpy (van der Walt et al. 2011), Pandas (McKinney 2010), and Matplotlib (Hunter 2007). We also made use of Astropy (http://www.astropy.org), a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018). ; Peer reviewed
BASE
In: Iraqi journal of science, S. 3909-3924
ISSN: 0067-2904
In this article, the existence of thermal radiation with Copper- water nanofluid, the effect of heat transfer in unsteady magnetohydrodynamics (MHD) squeezing and suction-injection on the flow between parallel plates( porous medium) are studied. Rosseland approximation and the radiation of heat flux are used to depict the energy equation. The set of ordinary differential equations with boundary conditions are analytically resolved by applying a new approach method (NAM). The influences of thermal field and physical parameters on dimensionless flow field have been displayed in tabular and graphs form. The presented results show that the heat transfer coefficient is reduced by the thermal radiation coefficient increases and the absolute values of the skin friction coefficients are enhanced with the magnetic amplification parameter. Regularly, the present outcomes discern that the parameters of the injection-suction coefficient are both the temperature and velocity profiles decline.
Interstellar and circumstellar matter.-- et al. ; The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM. ; The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement No. 267934. ; Peer Reviewed
BASE
The Event Horizon Telescope Collaboration ; Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems. © 2019. The American Astronomical Society. All rights reserved. ; R.N. thanks the National Science Foundation (NSF; grants OISE-1743747, AST-1816420) and acknowledges computational support from the NSF via XSEDE resources (grant TG-AST080026N). L.D.Z. acknowledges support from the PRIN-MIUR project Multi-scale Simulations of High-Energy Astrophysical Plasmas (Prot. 2015L5EE2Y) and from the INFN-TEONGRAV initiative. C.J.W. made use of thComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chilee Extreme Science and Engineering Discovery Environment (XSEDE) Comet at the San Diego Supercomputer Center through allocation AST170012. The H-AMR high-resolution simulation was made possible by NSF PRAC award Nos. 1615281 and OAC-1811605 at the Blue Waters sustained-petascale computing project and supported in part under grant No. NSF PHY-1125915 (PI A. Tchekhovskoy). K.C. and S.M. are supported by the Netherlands Organization for Scientific Research (NWO) VICI grant (No. 639.043.513); M.L. is supported by the NWO Spinoza Prize (PI M.B.M. van der Klis). The HARM-Noble simulations were made possible by NSF PRAC award No. NSF OAC-1515969, OAC-1811228 at the Blue Waters sustained-petascale computing project, and supported in part under grant No. NSF PHY-1125915. The BHAC CKS-GRMHD simulations were performed on the Dutch National Supercomputing cluster Cartesius and are funded by the NWO computing grant 16431. S.C.N. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center administered by USRA through a contract with NASA. Y.M., H.O., O.P., and L.R. acknowledge support from the ERC synergy grant >BlackHoleCam: Imaging the Event Horizon of Black Holes> (grant No. 610058). M.B. acknowledges support from the European Research Council (grant No. 715368-MagBURST) and from the Gauss Centre for Supercomputing e.V. (www.Gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de).P.C.F.was supported by NSF grant AST-1616185 and used resources from the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF grant No. ACI-1548562. Work by P.A. was performed in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The authors of the present paper further thank the following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496); the Advanced European Network of E-infrastructures for Astronomy with the SKA (AENEAS) project, supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under grant agreement 731016; the Alexander von Humboldt Stiftung; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chile, via PIA ACT172033, Fondecyt 1171506, BASAL AFB-170002, ALMA-conicyt 31140007); Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico, projects 104497, 275201, 279006, 281692); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (DGAPA-UNAM, project IN112417); the European Research Council Synergy Grant >BlackHoleCam: Imaging the Event Horizon of Black Holes> (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177; the Gordon and Betty Moore Foundation (grants GBMF-3561, GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; the Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJ-SSW-SYS008); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107-2119-M-001-020, and 107-2119-M-110-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC17K0649); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097, AST-1310896, AST-1312651, AST-1337663, AST-1440254, AST-1555365, AST-1715061, AST-1615796, AST-1716327, OISE-1743747, AST-1816420); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants NRF-2015H1A2A1033752, 2015-R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043. 513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648); the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development, and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Russian Science Foundation (grant 17-12-01029); the Spanish Ministerio de Economia y Competitividad (grants AYA2015-63939-C2-1-P, AYA2016-80889-P); the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709); the Toray Science Foundation; the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218CNA000001)); the Italian Ministero dell'Istruzione Universita e Ricerca through the grant Progetti Premiali 2012-iALMA (CUP C52I13000140001); the European Union's Horizon 2020 research and innovation programme under grant agreement No. 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; and Chandra TM6-17006X. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF grants DBI-0735191, DBI-1265383, and DBI-1743442. XSEDE Stampede2 resource at TACC was allocated through TG-AST170024 and TG-AST080026N. XSEDE JetStream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS in Stuttgart. This research was enabled in part by support provided by Compute Ontario (http://computeontario.ca), Calcul Quebec (http://www.calculquebec.ca), and Compute Canada (http://www.computecanada.ca).
BASE
PA acknowledges funding from his STFC Ernest Rutherford Fellowship (No. ST/R004285/1). TVD was funded by GOA-2015-014 (KU Leuven). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 724326). ; The inhomogeneous solar corona is continuously disturbed by transverse MHD waves. In the inhomogeneous environment of coronal flux tubes, these waves are subject to resonant absorption, a physical mechanism of mode conversion in which the wave energy is transferred to the transition boundary layers at the edge between these flux tubes and the ambient corona. Recently, transverse MHD waves have also been shown to trigger the Kelvin-Helmholtz instability (KHI) due to the velocity shear flows across the boundary layer. Also, continuous driving of kink modes in loops has been shown to lead to fully turbulent loops. It has been speculated that resonant absorption fuels the instability by amplifying the shear flows. In this work, we show that this is indeed the case by performing simulations of impulsively triggered transverse MHD waves in loops with and without an initially present boundary layer, and with and without enhanced viscosity that prevents the onset of KHI. In the absence of the boundary layer, the first unstable modes have high azimuthal wavenumber. A boundary layer is generated relatively late due to the mixing process of KHI vortices, which allows the late onset of resonant absorption. As the resonance grows, lower azimuthal wavenumbers become unstable, in what appears as an inverse energy cascade. Regardless of the thickness of the initial boundary layer, the velocity shear from the resonance also triggers higher order azimuthal unstable modes radially inwards inside the loop and a self-inducing process of KHI vortices occurs gradually deeper at a steady rate until basically all the loop is covered by small-scale vortices. We can therefore make the generalisation that all loops with transverse MHD waves become fully turbulent and that resonant absorption plays a key role in energising and spreading the transverse wave-induced KHI rolls all over the loop. ; Publisher PDF ; Peer reviewed
BASE
The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.© 2019. The American Astronomical Society. ; The authors of this Letter thank the following organizations and programs: the Academy of Finland (projects 274477, 284495, 312496); the Advanced European Network of E-infrastructures for Astronomy with the SKA (AENEAS) project, supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under grant agreement 731016; the Alexander von Humboldt Stiftung; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, Chile, via PIA ACT172033, Fondecyt 1171506, BASAL AFB170002, ALMA-conicyt 31140007); Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico, projects 104497, 275201, 279006, 281692); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Dirección General de Asuntos del Personal Académico-Universidad Nacional 9 The Astrophysical Journal Letters, 875:L1 (17pp), 2019 April 10 The EHT Collaboration et al. Autónoma de México (DGAPA-UNAM, project IN112417); the European Research Council (ERC) Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (grant 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177; the Gordon and Betty Moore Foundation (grants GBMF-3561, GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; the Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (JP17J08829); JSPS Overseas Research Fellowships; the Key Research Program of Frontier Sciences, Chinese ; Academy of Sciences (CAS, grants QYZDJ-SSW-SLH057, QYZDJ-SSW-SYS008); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (grants 18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007); the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107- 2119-M-001-020, and 107-2119-M-110-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC17K0649); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (grant 2016YFA0400704, 2016YFA0400702); the National Science Foundation (NSF, grants AST-0096454, AST-0352953, AST-0521233, AST0705062, AST-0905844, AST-0922984, AST-1126433, AST1140030, DGE-1144085, AST-1207704, AST-1207730, AST1207752, MRI-1228509, OPP-1248097, AST-1310896, AST1312651, AST-1337663, AST-1440254, AST-1555365, AST1715061, AST-1615796, AST-1614868, AST-1716327, OISE1743747, AST-1816420); the Natural Science Foundation of China (grants 11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11873028, 11873073, U1531245, 11473010); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (grant 2015-R1D1A1A01056807, the Global PhD Fellowship Grant: NRF-2015H1A2A1033752, and the Korea Research Fellowship Program: NRF-2015H1D3A1066561); the Netherlands Organization for Scientific Research (NWO) VICI award (grant 639.043.513) and Spinoza Prize (SPI 78-409); the New Scientific Frontiers with Precision ; Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under grant 2017-00648); the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade); the Russian Science Foundation (grant 17-12-01029); the Spanish Ministerio de Economía y Competitividad (grants AYA2015-63939-C2-1-P, AYA2016-80889-P); the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709); the Toray Science Foundation; the US Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract 89233218CNA000001)); the Italian Ministero dell'Istruzione Università e Ricerca through the grant Progetti Premiali 2012-iALMA (CUP C52I13000140001); the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 RadioNet; ALMA North America Development Fund; Chandra TM6-17006X ; Peer reviewed
BASE
The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz. ; Academy of Finland [274477, 284495, 312496]; European Commission Framework Programme Horizon 2020 Research and Innovation action [731016]; Black Hole Initiative at Harvard University through John Templeton Foundation [60477]; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chile) [PIA ACT172033, Fondecyt 1171506, BASAL AFB-170002, ALMA-conicyt 31140007]; Consejo Nacional de Ciencia y Tecnologica (CONACYT, Mexico) [104497, 275201, 279006, 281692]; Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (DGAPA-UNAM) [IN112417]; European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" [610058]; Generalitat Valenciana postdoctoral grant [APOSTD/2018/177]; Gordon and Betty Moore Foundation [GBMF-947, GBMF-3561, GBMF-5278]; Japanese Government (Monbukagakusho: MEXT) Scholarship; Japan Society for the Promotion of Science (JSPS) [JP17J08829]; JSPS Overseas Research Fellowships; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) [QYZDJ-SSW-SLH057, QYZDJ-SSW-SYS008]; Leverhulme Trust Early Career Research Fellowship; MEXT/JSPS KAKENHI [18KK0090, JP18K13594, JP18K03656, JP18H03721, 18K03709, 18H01245, 25120007]; MIT International Science and Technology Initiatives (MISTI) Funds; Ministry of Science and Technology (MOST) of Taiwan [105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-0 01-017, 107-2119-M-001-020, 107-2119-M-110-005]; National Aeronautics and Space Administration (NASA) [80NSSC17K0649]; National Key Research and Development Program of China [2016YFA0400704, 2016YFA0400702]; National Science Foundation (NSF) [AST-0096454, AST-0352953, AST-0521233, AST-0705062, AST-0905844, AST-0922984, AST-1126433, AST-1140030, DGE-1144085, AST-1207704, AST-1207730, AST-1207752, MRI-1228509, OPP-1248097]; Natural Science Foundation of China [11573051, 11633006, 11650110427, 10625314, 11721303, 11725312, 11873028, 11873073, U1531245, 11473010]; Natural Sciences and Engineering Research Council of Canada (NSERC); National Research Foundation of Korea [NRF-2015H1A2A1033752, 2015-R1D1A1A01056807, NRF-2015H1D3A1066561]; Netherlands Organization for Scientific Research (NWO) VICI award [639.043.513]; Spinoza Prize [SPI 78-409]; Swedish Research Council [2017-00648]; Government of Canada through the Department of Innovation, Science and Economic Development Canada; Province of Ontario through the Ministry of Economic Development, Job Creation and Trade; Russian Science Foundation [17-12-01029]; Spanish Ministerio de Economia y Competitividad [AYA2015-63939-C2-1-P, AYA2016-80889-P]; US Department of Energy (USDOE) through the Los Alamos National Laboratory [89233218CNA000001]; Italian Ministero dell'Istruzione Universita e Ricerca through the grant Progetti Premiali 2012-iALMA [CUP C52I13000140001]; ALMA North America Development Fund; Sprows Family VURF Fellowship; NSERC Discovery Grant; NINS program of Promoting Research by Networking among Institutions [01421701]; NSF [ACI-1548562, DBI-0735191, DBI-1265383, DBI-1743442]; Compute Ontario; Calcul Quebec; Compute Canada; Smithsonian Institution; Academia Sinica; National Key R&D Program of China [2017YFA0402700]; Science and Technologies Facility Council (UK); CNRS (Centre National de la Recherche Scientifique, France); MPG (Max-Planck-Gesellschaft, Germany); IGN (Instituto Geografico Nacional, Spain); State of Arizona; NSF; NSF Physics Frontier Center award [PHY-0114422]; Kavli Foundation; GBMF [GBMF-947]; National Science Foundation [PLR-1248097]; NSF Physics Frontier Center grant [PHY-1125897]; South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; CyVerse; [Chandra TM6-17006X]; [DD7-18089X]; [AST-1310896]; [AST-1312651]; [AST-1337663]; [AST-1440254]; [AST-1555365]; [AST-1715061]; [AST-1615796]; [AST-1716327]; [OISE-1743747]; [AST-1816420]; [AST-1614868] ; This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
BASE
In: AWWA water science, Band 3, Heft 5
ISSN: 2577-8161
AbstractThe weight function method (WFM) is compared with the magnetohydrodynamics (MHDs) coupled solver approach for single‐point and multipoint magnetic flowmeters downstream of a distorted flow created by a long radius 90‐degree elbow. A review of the literature appears to indicate that researchers who are interested in magnetic flowmeter accuracy and performance either have been unaware of or not capable of analyzing magnetic flowmeters using the WFM. The study examines whether any differences are apparent between modeling the single‐point electrodes and omitting the electrodes from the model. The results of the study indicate differences less than 0.50% between the WFM and the MHD approach. The results also demonstrate that for single‐point flowmeters, modeling the electrodes is not necessary. This research eliminates the barrier of deriving a weight function to model magnetic flowmeters.Article Impact StatementAn alternative analysis method for magnetic flowmeters enables more researchers to evaluate their performance.