Relationship of Peptides and Long Non-Coding RNAs with Aging
In: Advances in Gerontology, Band 11, Heft 4, S. 351-361
ISSN: 2079-0589
608830 Ergebnisse
Sortierung:
In: Advances in Gerontology, Band 11, Heft 4, S. 351-361
ISSN: 2079-0589
Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression. ; TG group acknowledges support of the Spanish Ministry of Economy and Competitiveness grants, 'Centro de Excelencia Severo Ochoa 2013-2017' SEV-2012-0208, and BIO2012-37161 cofounded by European Regional Development Fund (ERDF); from the European Union and ERC Seventh Framework Programme (FP7/2007-2013) under grant agreement ERC-2012-StG-310325, and a grant from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No H2020-MSCA-ITN-2014-642095. CP group acknowledges support from the Fundació Parc Taulí by grants CIR2010040 and CIR2014023.
BASE
Altres ajuts: The authors thank Jesse R. Willis for his help in editing the manuscript. TG group acknowledges support of the Spanish Ministry of Economy and Competitiveness grants, cofounded by European Regional Development Fund (ERDF); from the European Union and ERC Seventh Framework Programme (FP7/2007-2013) under grant agreement ERC-2012-StG-310325. CP group acknowledges support from the Fundació Parc Taulí by grants CIR2010040 and CIR2014023 (http://www.tauli.cat/tauli/en/Fpt/fpt.htm). ; Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression.
BASE
In: Reproductive sciences: RS : the official journal of the Society for Reproductive Investigation, Band 29, Heft 10, S. 2960-2976
ISSN: 1933-7205
AbstractSuper-enhancer-associated long non-coding RNAs (SE-lncRNAs) are a specific set of lncRNAs transcribed from super-enhancer (SE) genomic regions. Recent studies have revealed that SE-lncRNAs play essential roles in tumorigenesis through the regulation of oncogenes. The objective of this study was to elucidate the expression profile of SE-lncRNAs with concurrent assessment of associated mRNAs in leiomyomas and paired myometrium. Arraystar SE-lncRNAs arrays were used to systematically profile the differentially expressed SE-lncRNAs along with the corresponding SE-regulated protein coding genes in eight leiomyomas and paired myometrium. The analysis indicated 7680 SE-lncRNAs were expressed, of which 721 SE-lncRNAs were overexpressed, while 247 SE-lncRNAs were underexpressed by 1.5-fold or greater in leiomyoma. Thirteen novel SE-lncRNAs and their corresponding protein coding genes were selected, and their expression was confirmed in eighty-one paired leiomyoma tissues by quantitative real-time PCR. The thirteen pairs of SE-lncRNAs and their corresponding protein coding genes included RP11-353N14.2/CBX4, SOCS2-AS1/SOCS2, RP1-170O19.14/HOXA11, CASC15/PRL, EGFLAM-AS1/EGFLAM, RP11-225H22/NEURL1, RP5-1086K13.1/CD58, AC092839.3/SPTBN1, RP11-69I8.3/CTGF, TM4SF1-AS1/TM4SF1, RP11-373D23/FOSL2, RP11-399K21.11/COMTD1, and CTB-113P19.1/SPARC. Among these SE-lncRNAs, the expression of SOCS2-AS1/SOCS2, RP11-353N14.2/CBX4, RP1-170O19.14/HOXA11, and RP11-225H22/NEURL1 was significantly higher in African Americans as compared with Caucasians. The expression of RP11-353N14.2/CBX4, SOCS2-AS1/SOCS2, CASC15/PRL, and CTB-113P19.1/SPARC was significantly higher in tumors with MED12-mutation-positive as compared with MED12-mutation-negative tumors. Collectively, our results indicate that the differential expression of SE in leiomyomas is another mechanism contributing to dysregulation of protein coding genes in leiomyomas and that race and MED12 mutation can influence the expression of a select group of SE.
In: Reproductive sciences: RS : the official journal of the Society for Reproductive Investigation, Band 29, Heft 4, S. 1086-1101
ISSN: 1933-7205
Numerous studies have sought to decipher the genetic and other mechanisms contributing to β-cell loss and dysfunction in diabetes mellitus. However, we have yet to fully understand the etiology of the disease or to develop satisfactory treatments. Since the majority of diabetes susceptibility loci are mapped to non-coding regions within the genome, understanding the functions of non-coding RNAs in β-cell biology might provide crucial insights into the pathogenesis of type 1 (T1D) and type 2 (T2D) diabetes. During the past decade, numerous studies have indicated that long non-coding RNAs play important roles in the maintenance of β-cell mass and function. Indeed, lncRNAs have been shown to be involved in controlling β-cell proliferation during development and/or β-cell compensation in response to hyperglycaemia. LncRNAs such as TUG-1 and MEG3 play a role in both β-cell apoptosis and function, while others sensitize β-cells to apoptosis in response to stress signals. In addition, several long non-coding RNAs have been shown to regulate the expression of β-cell-enriched transcription factors in cis or in trans. In this review, we provide an overview of the roles of lncRNAs in maintaining β-function and mass, and discuss their relevance in the development of diabetes. ; Published version ; GAR was supported by a Wellcome Trust Investigator Award (212625/Z/18/Z), MRC Programme grants (MR/R022259/1, MR/J0003042/1, MR/L020149/1) and by Diabetes UK (BDA/11/0004210, BDA/15/0005275, BDA 16/0005485) project grants. This project has received funding from the European Union's Horizon 2020 research and innovation programme via the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115881 (RHAPSODY). This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA.
BASE
Breast cancer is a heterogeneous disease classified into four main subtypes with different clinical outcomes, such as patient survival, prognosis, and relapse. Current genetic tests for the differential diagnosis of BC subtypes showed a poor reproducibility. Therefore, an early and correct diagnosis of molecular subtypes is one of the challenges in the clinic. In the present study, we identified differentially expressed genes, long non-coding RNAs and RNA binding proteins for each BC subtype from a public dataset applying bioinformatics algorithms. In addition, we investigated their interactions and we proposed interacting biomarkers as potential signature specific for each BC subtype. We found a network of only 2 RBPs (RBM20 and PCDH20) and 2 genes (HOXB3 and RASSF7) for luminal A, a network of 21 RBPs and 53 genes for luminal B, a HER2-specific network of 14 RBPs and 30 genes, and a network of 54 RBPs and 302 genes for basal BC. We validated the signature considering their expression levels on an independent dataset evaluating their ability to classify the different molecular subtypes with a machine learning approach. Overall, we achieved good performances of classification with an accuracy >0.80. In addition, we found some interesting novel prognostic biomarkers such as RASSF7 for luminal A, DCTPP1 for luminal B, DHRS11, KLC3, NAGS, and TMEM98 for HER2, and ABHD14A and ADSSL1 for basal. The findings could provide preliminary evidence to identify putative new prognostic biomarkers and therapeutic targets for individual breast cancer subtypes. ; The research leading to these results has been supported by European Research Council grant agreements RIBOMYLOME (309545) and ASTRA (855923), and the European Union's Horizon 2020 research and innovation programme grant agreements IASIS (727658), DeepRNA (793135), and INFORE (825080). We would like to thank for the financial support the project Grant SysBioNet, Italian Roadmap Research Infrastructures 2012.
BASE
In: HELIYON-D-22-30623
SSRN
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 273, S. 116136
ISSN: 1090-2414
In: Environmental science and pollution research: ESPR, Band 28, Heft 34, S. 47035-47045
ISSN: 1614-7499
In: Environmental science and pollution research: ESPR, Band 29, Heft 8, S. 12136-12146
ISSN: 1614-7499
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 212, S. 111976
ISSN: 1090-2414
Myocardial infarction (MI) is one of the most common cardiovascular diseases. Although previous studies have shown that histidine decarboxylase (HDC), a histamine-synthesizing enzyme, is involved in the stress response and heart remodeling after MI, the mechanism underlying it remains unclear. In this study, using Hdc-deficient mice (Hdc(−/−) mice), we established an acute myocardial infarction mouse model to explore the potential roles of Hdc/histamine in cardiac immune responses. Comprehensive analysis was performed on the transcriptomes of infarcted hearts. Differentially expressed gene (DEG) analysis identified 2126 DEGs in Hdc-deficient groups and 1013 in histamine-treated groups. Immune related pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then we used the ssGSEA algorithm to evaluate 22 kinds of infiltrated immunocytes, which indicated that myeloid cells and T memory/follicular helper cells were tightly regulated by Hdc/histamine post MI. The relationships of lncRNAs and the Gene Ontology (GO) functions of protein-coding RNAs and immunocytes were dissected in networks to unveil immune-associated lncRNAs and their roles in immune modulation after MI. Finally, we screened out and verified four lncRNAs, which were closely implicated in tuning the immune responses after MI, including ENSMUST00000191157, ENSMUST00000180693 (PTPRE-AS1), and ENSMUST-00000182785. Our study highlighted the HDC-regulated myeloid cells as a driving force contributing to the government of transmission from innate immunocytes to adaptive immunocytes in the progression of the injury response after MI. We identified the potential role of the Hdc/histamine-lncRNAs network in regulating cardiac immune responses, which may provide novel promising therapeutic targets for further promoting the treatment of ischemic heart disease.
BASE
In: Ecotoxicology and environmental safety: EES ; official journal of the International Society of Ecotoxicology and Environmental safety, Band 264, S. 115428
ISSN: 1090-2414
In: NCRNA-D-23-00276
SSRN