Satellite remote sensing offers the possibility to continuously, globally collect information about Earth's surface properties, and thus possesses an enormous scientific and economic potential. The spatio-temporal recording of information opens up a wide range of possibilities for large-scale monitoring of changes and influencing factors, e.g. in atmospheric research, agriculture and forestry, geology, urban areas and the analysis of natural hazards. The European Union's Copernicus programme marks the beginning of a new era in satellite-based Earth observation by designing and launching the Sentinel series, an operational fleet of high-continuity, multi-combinable observation systems. This enables completely new objects of investigation, but also requires a new level of automated data processing in order to make the huge amounts of data available for analysis. This article provides an insight into current remote sensing research at the GFZ. First, it presents the activities related to the creation of preprocessing standards and interfaces for data evaluation, geo-data management and visualization. In the following, examples for multi-sensor analysis of land use potentials and natural hazards are shown, in order to finally discuss the role of the GFZ in the development of hyperspectral satellite missions and related data analysis.
Urbanization is a fundamental force of change and in Europe has underpinned the flourishing of civilization for millennia. However, the 21st-century is also witnessing the impact of other societal challenges, including climate change adaptation, and mitigation, as well as the need to secure the efficient utilisation of finite resources. These societal challenges are impacting not only the social fabric of urban life, and the economy of cities, but also the civil quality of urban environments throughout Europe. It is clear that if properly governed cities can become a major part of the solutions to the growing threat of these urban challenges, and so can become economically vital, culturally vibrant, and healthy environments delivering first-class quality of life for hundreds of millions of city dwellers throughout Europe. Nonetheless, the challenge of urban governance is immense, and must address the complex and interconnected reality of urban systems to secure a proper balance between the socio-economic and environmental dynamics of urban areas. The key to effective governance of cities is the generation of the necessary intelligence to inform decision-making by city administrations and politicians, to guide urban policy making and implementation, and to inform and engage all citizens in the delivery of sustainable urban development. The DECUMANUS project underpins this understanding that the delivery of more sustainable cities requires the application of enhanced intelligence in urban management, to produce an effective basis for assessment of urban complexity and decision-making. The enhanced services proposed by DECUMANUS offer the potential to provide urban planners with the tools and intelligence that allow city managers to deploy geo-spatial products in the development and implementation of their climate change strategies, and more generally in meeting the diverse challenges of sustainable urban development. The services are based on related state-of-the-art Earth Observation techniques, methodologies and products. The paper analyses the impact of the developed DECUMANUS services on urban governance and provides an overview of the services identified by the project city users as most relevant and useful for supporting the sustainable governance of the city.
Sub-Saharan Africa, Ghana, Burkina Faso, Volta basin, integrated water resource management, multi agent based model, hydrologic modelling, institutional analysis, land use change, water supply, sanitation, policy dialogue, climate simulation
The decarbonization of the global energy system through the transition to renewable energy sources is one of the main pillars of mitigation measures addressing climate change. A key determinant in the realization of a successful energy transition is the rapid installation of renewable energy infrastructure, which, for the most part, is of very heterogenous nature and spatially decentralized [1]. This is particularly true for roof-top photovoltaic systems (PVs), which are often small-scale, privately owned, differ widely in their capacity and are non-randomly distributed in space, with even the occasional emergence of patterns of socio-economic and political boundary conditions. In order to foster the rapid expansion of PV installations, which is needed for reaching aims and commitments with respect to the energy transition, an automatically updatable monitoring of the evolution of such PV installations over time can be a vital asset for political decision makers, both on the communal and national level, supporting the efficient allocation of resources. Here, we demonstrate a system for nationwide mapping of rooftop PV installations based on multiple timesteps of aerial imagery for all of Germany. We demonstrate our system with an exemplary wall-to-wall analysis, where we exploited publicly available registry data as well as manually labelled samples for training data collection. Based on this curated training data set of around 350.000 samples, we trained ensembles of supervised, state-of-the-art deep neural networks (ResNets, ResNests, EfficientNets, ConvNexts and VisionTransformers) for predicting the presence of PV installations for each building in Germany. Following a rigorous validation exercise based on over 20.000 samples, we report a very high predictive performance of 0.96% F1-score overall, with a regional variability of +/- 0.03. Going beyond single date classifications, this system enables us to track the growth of PV installations over time throughout Germany. Add-on analyses of installed PVs in ...
Given the growing world population and rising demand for fish and seafood, aquaculture is becoming the main source of aquatic food in human consumption and a primary protein source for millions of people. Since 1990, the world aquaculture production increased from 13 to over 80 million tonnes and is currently valued at USD 231 billion. The cultivation of shrimp species in land-based ponds is one of the fastest growing food production economies and became an important industry in coastal regions, generates income and employment and contributes to food security. Shrimp farms are mainly found in low-lying coastal regions such as estuaries, bays and river deltas along the shorelines of Asia and America. Shrimp farming expanded rapidly in recent years and led to environmental degradation and conversion of valuable wetlands such as mangroves and other coastal forests. The loss of mangroves poses a major threat to coastal ecosystems and population, as mangroves provide valuable flood and coastal protection, as well as risk reduction benefits with regard to global climate change induced effects. In this research, we use image segmentation for temporal features derived from space-borne, high-resolution synthetic aperture radar (SAR) data to extract shrimp farming ponds in coastal mangrove forest areas in Ecuador, South America. An automatic object-based image processing approach aims for the detection of rectangular shaped pond objects utilizing per-pixel median images calculated from C-band Sentinel-1 and L-band ALOS-Palsar SAR time series data. An open source connected component segmentation algorithm was used to extract and locate rectangular shrimp farms in coastal areas based on backscatter intensity and shape features. This study illustrates the opportunities by earth observation for area-wide assessments of shrimp farming activities in mangrove areas to gain more knowledge on land use dynamics with regard to global change and food security. Earth observation can effectively support the planning and management of aquaculture practices and support stakeholders, politicians, and conservationists in implementing appropriate measures in order to protect coastal environments and foster sustainable development in the coastal zone.
Land use and land cover (LULC) change is an important climate forcing, and climate change also affects LULC processes. We aim to assess the regional sc-ale interaction of LULC change and climate change. Driving forces of LULC change are also examined. Jiangxi Province, China is used as a case study. (1) To obtain reliable climate trends, we apply Standard Normal Homogeneity Test (SNHT) in surface temperature and precipitation data for the period of 1951-1999. We also compare the temperature trend computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. (2) To assess the regional impacts of land surface type on surface temperature and precipitation change integrating regional topographic characteristics, we use the Observation Minus Reanalysis (OMR) method. (3) To analyze the driving mechanisms of cropland and built-up land changes over Jiangxi, an integrative approach with quantitative policy effect involving remote sensing, geograph-ical information system (GIS) and statistical techniques is applied. Precipitation series are found to be homogeneous. The comparison between GHCN and our analysis on adjusted temperatures indicates that the resulting climate trends vary slightly from datasets to datasets. A feature of warming wi-nter versus cooling summer and spring drying versus summer wetting is revea-led. Poyang Lake watershed is the center of summer cooling. OMR trends associated with land surface type present that strong surface warming response to land barrenness and weak warming response to land gre-enness. 81.1% of the surface warming over vegetation index areas (0~0.2) att-ributes to LULC change incorporating regional topographic characteristics. The contribution capability of LULC change decreases as land cover greenness increases. OMR trends of precipitation have a weak dependence on the type of land-surface. We find that the cropland transition in Jiangxi has been achieved through multiple interacting mechanisms including policy and socio-economic forces as the proximate factors and biophysical factor as the underlying cause. The pathways leading to built-up land transition rely to various degrees and combi-nations on socio-economic factors. This study has important implications in the monitoring and modeling pro-cesses of climate. We suggest LULC change should be considered along with greenhouse gas as a forcing in local and regional climate modeling. ; Die Veränderung der Landoberfläche im Sinne einer veränderten Bodennutzung und Vegetationsbedeckung (land use and land cover change LULC) stellt einen bedeutenden Faktor in der Klimaforschung dar, wird jedoch wiederum selbst durch den Klimawandel beeinflusst. Ziel der vorgelegten Arbeit ist (1) die Ableitung von Oberflächentemperatur- und Niederschlagstrends der Provinz Jiangxi, China für den Zeitraum von 1951-1999 basierend auf homogenisierten Beobachtungsdaten unter Anwen-dung von Standard Normal Homogenitätstest (SNHT) sowie ein Vergleich der Ergebnisse mit den aus den Datensätzen des Global Historical Climatology Network (GHCN) berechneten Trends. Des Weiteren wurde (2) unter Verwendung der Observation Minus Reanalyse (OMR)-Methode der kleinräumige Einfluss der Beschaffenheit und Topographie der Landoberfläche auf Veränderungen von Oberflächentemperatur und Niederschlag untersucht. (3) Für die Arbeit wurde ein auf Integrativen Prozessen und unter Berücksichtigung qua-ntitativer Verfahrensweisen wie Fernerkundung, Geographischer Informationssysteme (GIS) oder statistischen Methoden basierender Ansatz verwendet sowie die Antriebsmechanismen des Landnutzungswandels von Ackerland und bebauter Fläche in Jiangxi (1995-2005) analysiert. Die Ergebnisse nach der Homogenisierung der Oberflächentemperatur- und Niederschlagsdaten zeigen gegenüber der Verwendung von Rohdaten eine deutlich abgeschwächte Erwärmung der winterlichen Temperaturen in Jiangxi. Auch die räumliche Abkühlung während der Sommermonate wird durch nicht bereinigte Daten übertrieben. Der Vergleich zwischen den Datensätzen der GHCN und den in der hier vorgestellten Analyse verwendeten, bereinigten Temperaturdaten zeigen eine nur geringfüge Abweichung der jeweils resu-ltierenden Klimatrends. Die Niederschlagserie erweisen sich als homogen. Als klimatische Besonderheit des Untersuchungsgebiets wurden eine Erwärmung der Wintermonate sowie eine Abkühlung während der Sommermonate und zunehmend trockene Verhältnisse während der Frühlingsmonate im Gegensatz zu einer Verstärkung der Humidität während des Sommers nachgewiesen. Als geographisches Zentrum der sommerlichen Abkühlung konnte das Einzugsge-biet des Poyang-Sees identifiziert werden.Der Vergleich von OMR-Trends mit dem Typ der Landoberfläche zeigt eine besonders deutliche Erwärmung über vegetationsloser Landoberfläche im Vergleich zu Grünlandflächen. 81.1% der Erwärmung über Landoberflächen mit Vegetationsbedeckung lassen sich auf LULC-Änderungen zusammen mit topographischen und regionalen Merkmalen zurückführen. Die Aussagekraft der LULC-Änderung nimmt mit zunehmender Vegetationsbedeckung der Landoberfläche kontinuierlich ab. Die OMR-Trends der Niederschlagsdate-nsätze zeigen eine schwache Abhängigkeit von der Art der Landoberfläche. Zu der Veränderung der Nutzung der Ackerflächen in Jiangxi trugen mehrere miteinander interagierende Mechanismen, einschließlich politischer und sozio-ökonomischer Kräfte als unmittelbarer Faktoren, sowie biophysikalische Not-wendigkeiten ursächlich bei. Der Übergang von Ackerland zu Bauland ist in hohem Maße auf eine Kombination sozio-ökonomischer Faktoren zurück zu führen.
Siedlungsflächen entwickeln sich dynamisch. Ein Monitoring, um aktuelle Entwicklungstrends der Siedlungsflächen zu beurteilen, ist für die Raumbeobachtung eine große Herausforderung. Angesichts aktueller Stadtentwicklungsimpulse ist die Nutzung neuer Datenquellen zur Planung und flächensparender Steuerung aktueller sowie künftiger Flächenansprüche umso wichtiger. Der Aussagekraft der Flächenstatistik nach Art der Tatsächlichen Nutzung als entscheidende amtliche Datengrundlage sind durch zeitliche und räumliche Inkonsistenzen Grenzen gesetzt. Frei verfügbare Fernerkundungsdaten bieten hinsichtlich besserer zeitlicher und räumlicher Auflösung eine potenziell verlässliche und kostengünstige Quelle. So stehen seit 2015 mit der Verfügbarkeit des multispektralen Erdbeobachtungssatelliten Sentinel-2-Daten mit hoher Wiederholungsrate und weltweiter Abdeckung zur Verfügung, womit sich neue Möglichkeiten der landesweiten Kartierung der Landoberfläche ermöglichen. Der Artikel stellt erste Ergebnisse des Projektes "Inwertsetzung von Copernicus-Daten zur Raumbeobachtung" (incora) vor. Es werden die Notwendigkeit von Fernerkundungsdaten, der Mehrwert sowie Limitationen eines satellitenbasierten Siedlungsflächenmonitorings anhand von Landbedeckungsklassifikationen und Indikatoren zur Siedlungsflächenentwicklung dargestellt.
Hochgebirge sind faszinierende Lebensräume und zugleich ein Hotspot der Global-Change-Forschung. Das vorliegende Buch widmet sich den Gebirgen, die seit der UN-Konferenz für Umwelt und Entwicklung in Rio de Janeiro im Juni 1992 verstärkt in den Blickpunkt der Weltöffentlichkeit gerückt sind. Seitdem hat das Bewusstsein um die globale Bedeutung der Gebirgsressourcen, um die Bedrohung ihrer Natur- und Kulturlandschaften durch globale Umweltveränderungen sowie um die Probleme der Bergbevölkerung stark zugenommen. Damit haben Fragen zur Entwicklung in den Bergen der Welt mehr politische Aufmerksamkeit und wissenschaftliches Interesse erfahren. So entstanden internationale Forschungsnetze, wie z.B. die Global Observation Research Initiative in Alpine Environments (GLORIA), der World Glacier Monitoring Service (WGMS) wurde intensiviert und das Global Terrestrial Network for Permafrost (GTN-P) gestartet. Auch im Global Mountain Biodiversity Assessment (GMBA) arbeiten über 1.100 Wissenschaftlerinnen und Wissenschaftler aus 83 Ländern zusammen, um wissenschaftliche Ergebnisse für Politikerinnen und Politiker aufzubereiten. Die Gebirge der Erde sind eine Folge der ständigen tektonischen Aktivität der Erdkruste. Sie repräsentieren aber auch die jeweilige dritte Dimension in einer bestimmten Vegetations- und Klimazone. Gebirge bedecken 20-25% der Landoberfläche, so dass sie in erheblichem Maße die regionale, aber auch die großräumige atmosphärische Zirkulation mitbestimmen. Nur etwa 10% der Menschen leben in Gebirgen, aber fast die Hälfte ist vom Wasser, der Energie, den Bodenschätzen und anderen natürlichen Ressourcen aus ihnen abhängig. Außerdem sind sie Biodiversitätshotspots und oftmals Zentren kultureller Vielfalt, aber auch wichtig für Erholung und Tourismus.
Mittels umweltpolitischer Programme von weltweit einzigartigem Ausmaß versucht China sowohl den menschlichen Druck auf die Landbedeckung zu mindern als auch eine nachhaltige Landnutzung zu fördern. Als Hotspot globaler Umweltveränderungen wurden insbesondere für die Innere Mongolei erhebliche Investitionen zur Renaturierung von Landoberflächen von der chinesischen Zentralregierung getätigt. Die Fernerkundung ist ein effektiver Ansatz für ein flächendeckendes Monitoring des Landnutzungswandels. Jedoch erschweren die limitierte Datenverfügbarkeit und das Fehlen verfügbarer Veränderungsanalysemethoden die Anwendung fernerkundlicher Techniken zum Monitoring von Landnutzung und ihrer Veränderungen. Um den Landnutzungswandel in der Inneren Mongolei verlässlich zu kartieren, wurden daher in einem ersten Schritt Möglichkeiten und Grenzen von Zeitreihen räumlich grob aufgelöster Fernerkundungsdaten für das Monitoring von Langzeitveränderungen der Landbedeckung untersucht. Im zweiten Schritt wurde ein Ansatz zur Erfassung von jährlichen Veränderungen zwischen mehreren Landnutzungsklassen entwickelt und angewandt. Die Ergebnisse zeigen, dass die chinesische Landnutzungspolitik seit dem Jahr 2000 wirksam zum Erhalt und zur Regenerierung von Waldökosystemen in der Inneren Mongolei beiträgt. Abnehmende Entwaldung und ein Zuwachs von Waldflächen sind insbesondere in jenen Regionen zu finden, in welchen die landnutzungspolitischen Maßnahmen umgesetzt wurden. Die Konvertierung von Ackerland zu Grasland wurde zumeist innerhalb anfälliger, klimatisch und topographisch ungeeigneter Gebiete beobachtet. Die vorliegende Dissertation veranschaulicht sowohl den Einfluss politischer Maßnahmen und zugrunde liegender sozio-ökonomischer Treiber auf die Landoberfläche als auch die Bedeutung von grob aufgelösten Fernerkundungsdaten und Zeitreihenanalysen für das Monitoring des Landnutzungswandels in großräumigen Gebieten. ; Monitoring land use and land cover change (LULCC) support better interpretation about how land surfaces are impacted by human decisions. The overall aim of this thesis is to gain a better understanding about LULCC in Inner Mongolia using remote sensing under consideration of China's land use policies. With the largest scale land restoration programs in the world, China aims to reduce human pressure on lands and promote sustainable land use. As a hot-spot of environmental change, Inner Mongolia received the heaviest investment from the central government for land restoration. Yet the effectiveness and consequences of China's land use policies in Inner Mongolia remain unclear. Remote sensing is an effective tool for monitoring land use and land cover change across broad scales, yet data limitations and a lack of available change detection methods hampers the capacity of researchers to apply remote sensing techniques for LULCC monitoring. To reliably map LULCC in Inner Mongolia, the opportunities and limitations of using coarse resolution imagery time series for monitoring long-term land changes was first examined. Second, an approach detecting annual changes between multiple land categories was developed and applied in Inner Mongolia. Results indicate that China's land use policies effectively preserved and recovered forest ecosystems in Inner Mongolia after the year 2000. The decreasing trends of deforestation and forest gain are obvious in the regions that implement China's land use policies, which reflect the positive influence of the policy. Cropland retirement was mostly found in ecologically fragile areas where climate and topographic conditions are unsuitable for cultivation. This thesis reveals how political factors and other underlying social-economic drivers impact a country''s land surface, and highlights the values of using coarse resolution imagery and time series analysis for LULCC monitoring across large areas.
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface. The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions. In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure. Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are: - Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series? - How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated? - What are the factors that control the sensitivity of ET and streamflow to external changes? These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments. Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years. Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months. A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions. The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts. This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions.:Kurzfassung Abstract List of Manuscripts Symbols and abbreviations List of Symbols List of abbreviations 1 Introduction 1.1 Motivation and relevance 1.1.1 Scientific importance of evapotranspiration 1.1.2 Pressure of human driven changes 1.1.3 Practical importance of evapotranspiration 1.2 Scope 1.2.1 Focus on the catchment scale 1.2.2 Changes in the hydroclimatology of river catchments 1.2.3 Hydro-climate data analysis 1.3 Objectives and research questions 1.3.1 Shifting seasons in hydrology 1.3.2 Long-term annual average changes of evapotranspiration and streamflow 1.3.3 Methodological requirements 1.4 Structure of the thesis 2 Long term variability of the annual hydrological regime 2.1 Introduction 2.1.1 Motivation 2.1.2 Seasonal changes in hydrologic records 2.1.3 Regional climate in Saxony 2.1.4 Objective and structure 2.2 Methods 2.2.1 Annual periodic signal extraction 2.2.2 The runoff ratio and its annual phase 2.2.3 Descriptive circular statistics 2.2.4 Detection of nonstationarities, trends and change points 2.3 Data 2.4.1 Estimation and variability of the timing of the runoff ratio 2.4.2 Temporal variability of the timing 2.4.3 Does temperature explain trends in seasonality of runoff ratio? 2.4.4 Trend analysis in snow dominated basins 2.4.5 Uncertainty and significance of the results 2.5 Conclusions 2.A Preparation of basin input data 2.A.1 Precipitation 2.A.2 Temperature and snow depth data 3 Evaluation of water-energy balance frameworks 3.1 Introduction 3.2 Theory 3.2.1 Coupled water and energy balance 3.2.2 The ecohydrologic framework for change attribution 3.2.3 Applying the climate change hypothesis to predict changes in basin evapo transpiration and streamflow 3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis 3.2.5 The Budyko hypothesis and derived sensitivities 3.3 Sensitivity analysis 3.3.1 Mapping of the Budyko functions into UW space 3.3.2 Mapping CCUW into Budyko space 3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow 3.3.4 Climate-vegetation feedback effects 3.4 Application: three case studies 3.4.1 Mississippi River Basin (MRB) 3.4.2 Headwaters of the Yellow River Basin (HYRB) 3.4.3 Murray-Darling River Basin (MDB) 3.5 Conclusions 3.5.1 Potentials and limitations 3.5.2 Insights on the catchment parameter 3.5.3 Validation 3.5.4 Perspectives 3.A Derivation of the climate change direction 4 Climate sensitivity of streamflow over the continental United States 4.1 Introduction 4.1.1 Motivation 4.1.2 Hydro-climate of the continental US 4.1.3 Aims and research questions 4.2 Methods 4.2.1 Ecohydrological concept to separate impacts of climate and basin changes 4.2.2 Streamflow change prediction based on a coupled water-energy balance framework 4.2.3 Streamflow change prediction based on the Budyko hypothesis 4.2.4 Statistical classification of potential climate and basin change impacts 4.3 Data 4.4 Results and discussion 4.4.1 Hydro-climate conditions in the US 4.4.2 Climate sensitivity of streamflow 4.4.3 Assessment of observed and predicted changes in streamflow 4.4.4 Uncertainty discussion 4.5 Conclusions 4.A Mathematical derivations for the Mezentsev function 5 Summary and conclusions 5.1 Shifting seasons in hydrology 5.1.1 Major findings 5.1.2 Socio-economic and political relevance 5.1.3 Limitations and possible directions for further research 5.2 Long-term annual changes in ET and streamflow 5.2.1 Major findings 5.2.2 Socio-economic and political relevance 5.2.3 Limitations and further research 5.3 General conclusions and outlook 5.3.1 Regional and temporal limits and validity 5.3.2 Hydrological records carry signals of climate and land use change 5.3.3 Statistical significance of past changes 5.3.4 Improvements in assessing ET 5.3.5 Remote sensing 5.3.6 Learning from the past to predict the future? Bibliography Danksagung Erklärung ; Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird. Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert: - Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt? - Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden? - Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen? Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat. Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren. Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen. Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden.:Kurzfassung Abstract List of Manuscripts Symbols and abbreviations List of Symbols List of abbreviations 1 Introduction 1.1 Motivation and relevance 1.1.1 Scientific importance of evapotranspiration 1.1.2 Pressure of human driven changes 1.1.3 Practical importance of evapotranspiration 1.2 Scope 1.2.1 Focus on the catchment scale 1.2.2 Changes in the hydroclimatology of river catchments 1.2.3 Hydro-climate data analysis 1.3 Objectives and research questions 1.3.1 Shifting seasons in hydrology 1.3.2 Long-term annual average changes of evapotranspiration and streamflow 1.3.3 Methodological requirements 1.4 Structure of the thesis 2 Long term variability of the annual hydrological regime 2.1 Introduction 2.1.1 Motivation 2.1.2 Seasonal changes in hydrologic records 2.1.3 Regional climate in Saxony 2.1.4 Objective and structure 2.2 Methods 2.2.1 Annual periodic signal extraction 2.2.2 The runoff ratio and its annual phase 2.2.3 Descriptive circular statistics 2.2.4 Detection of nonstationarities, trends and change points 2.3 Data 2.4.1 Estimation and variability of the timing of the runoff ratio 2.4.2 Temporal variability of the timing 2.4.3 Does temperature explain trends in seasonality of runoff ratio? 2.4.4 Trend analysis in snow dominated basins 2.4.5 Uncertainty and significance of the results 2.5 Conclusions 2.A Preparation of basin input data 2.A.1 Precipitation 2.A.2 Temperature and snow depth data 3 Evaluation of water-energy balance frameworks 3.1 Introduction 3.2 Theory 3.2.1 Coupled water and energy balance 3.2.2 The ecohydrologic framework for change attribution 3.2.3 Applying the climate change hypothesis to predict changes in basin evapo transpiration and streamflow 3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis 3.2.5 The Budyko hypothesis and derived sensitivities 3.3 Sensitivity analysis 3.3.1 Mapping of the Budyko functions into UW space 3.3.2 Mapping CCUW into Budyko space 3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow 3.3.4 Climate-vegetation feedback effects 3.4 Application: three case studies 3.4.1 Mississippi River Basin (MRB) 3.4.2 Headwaters of the Yellow River Basin (HYRB) 3.4.3 Murray-Darling River Basin (MDB) 3.5 Conclusions 3.5.1 Potentials and limitations 3.5.2 Insights on the catchment parameter 3.5.3 Validation 3.5.4 Perspectives 3.A Derivation of the climate change direction 4 Climate sensitivity of streamflow over the continental United States 4.1 Introduction 4.1.1 Motivation 4.1.2 Hydro-climate of the continental US 4.1.3 Aims and research questions 4.2 Methods 4.2.1 Ecohydrological concept to separate impacts of climate and basin changes 4.2.2 Streamflow change prediction based on a coupled water-energy balance framework 4.2.3 Streamflow change prediction based on the Budyko hypothesis 4.2.4 Statistical classification of potential climate and basin change impacts 4.3 Data 4.4 Results and discussion 4.4.1 Hydro-climate conditions in the US 4.4.2 Climate sensitivity of streamflow 4.4.3 Assessment of observed and predicted changes in streamflow 4.4.4 Uncertainty discussion 4.5 Conclusions 4.A Mathematical derivations for the Mezentsev function 5 Summary and conclusions 5.1 Shifting seasons in hydrology 5.1.1 Major findings 5.1.2 Socio-economic and political relevance 5.1.3 Limitations and possible directions for further research 5.2 Long-term annual changes in ET and streamflow 5.2.1 Major findings 5.2.2 Socio-economic and political relevance 5.2.3 Limitations and further research 5.3 General conclusions and outlook 5.3.1 Regional and temporal limits and validity 5.3.2 Hydrological records carry signals of climate and land use change 5.3.3 Statistical significance of past changes 5.3.4 Improvements in assessing ET 5.3.5 Remote sensing 5.3.6 Learning from the past to predict the future? Bibliography Danksagung Erklärung
Die Brasilianische Savanne, auch bekannt als der Cerrado, bedeckt ca. 24% der Landoberfläche Brasiliens. Der Cerrado ist von einer einzigartigen Biodiversität und einem starken Gradienten in der Vegetationsstruktur gekennzeichnet. Großflächige Landnutzungsveränderungen haben dazu geführt, dass annähernd die Hälfte der Cerrado in bewirtschaftetes Land umgewandelt wurde. Die Kartierung ökologischer Prozesse ist nützlich, um naturschutzpolitische Entscheidungen auf räumlich explizite Informationen zu stützen, sowie um das Verständnis der Ökosystemdynamik zu verbessern. Neue Erdbeobachtungssensoren, frei verfügbare Daten, sowie Fortschritte in der Datenverarbeitung ermöglichen erstmalig die großflächige Erfassung saisonaler Vegetationsdynamiken mit hohem räumlichen Detail. In dieser Arbeit wird der Mehrwert von Landsat-basierten Landoberflächenphänologischen (LSP) Metriken, für die Charakterisierung der Cerrado-Vegetation, hinsichtlich ihrer strukturellen und phänologischen Diversität, sowie zur Schätzung des oberirdischen Kohlenstoffgehaltes (AGC), analysiert. Die Ergebnisse zeigen, dass LSP-Metriken die saisonale Vegetatiosdynamik erfassen und für die Kartierung von Vegetationsphysiognomien nützlich sind, wobei hier die Grenzen der Einteilung von Vegetationsgradienten in diskrete Klassen erreicht wurden. Basierend auf Ähnlichkeiten in LSP wurden LSP Archetypen definiert, welche die Erfassung und Darstellung der phänologischen Diversität im gesamten Cerrado ermöglichten und somit zur Optimierung aktueller Kartierungskonzepte beitragen können. LSP-Metriken ermöglichten die räumlich explizite Quantifizierung von AGC in drei Untersuchungsgebieten und sollten bei zukünftigen Kohlenstoffschätzungen berücksichtigt werden. Die Erkenntnisse dieser Dissertation zeigen die Vorteile und Nutzungsmöglichkeiten von LSP Metriken im Bereich der Ökosystemüberwachung und haben demnach direkte Implikationen für die Entwicklung und Bewertung nachhaltiger Landnutzungsstrategien. ; The Brazilian savanna, known as the Cerrado, covers around 24% of Brazil. It is characterized by a unique biodiversity and a strong gradient in vegetation structure. Land-use changes have led to almost half of the Cerrado being converted into cultivated land. The mapping of ecological processes is, therefore, an important prerequisite for supporting nature conservation policies based on spatially explicit information and for deepening our understanding of ecosystem dynamics. New sensors, freely available data, and advances in data processing allow the analysis of large data sets and thus for the first time to capture seasonal vegetation dynamics over large extents with a high spatial detail. This thesis aimed to analyze the benefits of Landsat based land surface phenological (LSP) metrics, for the characterization of Cerrado vegetation, regarding its structural and phenological diversity, and to assess their relation to above ground carbon. The results revealed that LSP metrics enable to capture the seasonal dynamics of photosynthetically active vegetation and are beneficial for the mapping of vegetation physiognomies. However, the results also revealed limitations of hard classification approaches for mapping vegetation gradients in complex ecosystems. Based on similarities in LSP metrics, which were for the first time derived for the whole extent of the Cerrado, LSP archetypes were proposed, which revealed the spatial patterns of LSP diversity at a 30 m spatial resolution and offer potential to enhance current mapping concepts. Further, LSP metrics facilitated the spatially explicit quantification of AGC in three study areas in the central Cerrado and should thus be considered as a valuable variable for future carbon estimations. Overall, the insights highlight that Landsat based LSP metrics are beneficial for ecosystem monitoring approaches, which are crucial to design sustainable land management strategies that maintain key ecosystem functions and services.
In nie dagewesener Größenordnung greift der Mensch durch die Verbrennung fossiler Energieträger und der weiträumigen Umgestaltung der Landoberfläche in die globale Umwelt ein. Klimawandel und Übernutzung natürlicher Ressourcen könnten schon in diesem Jahrhundert die Anpassungsfähigkeiten vieler ökologischer und sozialer Systeme übersteigen und somit zu Konflikten und politischer Destabilisierung führen. Vor diesem Hintergrund soll diese Studie zu einem besseren Verständnis der wichtigsten globalen Triebkräfte beitragen, die die Entwicklung der terrestrischen Biosphäre in diesem Jahrhundert prägen werden: Klimawandel und menschliche Landnutzung. Auf der Basis eines Dynamischen Globalen Vegetationsmodells werden im ersten Teil der vorliegenden Arbeit zwei große klimatische Störungen des globalen Kohlenstoffkreislaufs untersucht, die innerhalb der letzten drei Jahrzehnte beobachtet wurden. Im Fordergrund steht die Frage, wie sich die Veränderungen von Temperatur-, Niederschlags- und Strahlungsbedingungen auf pflanzliche Produktivität und Zersetzungsprozesse im Boden auswirkten. Es zeigt sich, dass vermehrte Kohlenstoffspeicherung in der Landbiosphäre den überwiegenden Teil der atmosphärischen CO2 Anomalien erklärt. Der zweite Teil dieser Arbeit beschäftigt sich mit der weltweit steigenden Nachfrage nach Bioenergie, die aufgrund des flächenintensiven Anbaus von Biomasse zur wichtigsten Triebkraft für zukünftige Landnutzungsänderungen werden könnte. Aus der Kombination von Vegetationsmodellierung und räumlichen Datenanalysen werden globale Bioenergiepotentiale unter Berücksichtigung verschiedener Nachhaltigkeitsanforderungen bestimmt und mögliche ökologische Auswirkungen des großräumigen Anbaus von Energiepflanzen abgeschätzt. Im Jahr 2050 könnten demnach 15-25% des weltweiten Energiebedarfs durch Bioenergie abgedeckt werden. Dafür müssten allerdings natürliche Ökosysteme in großem Umfang in Agrarland umgewandelt werden. ; Human activities, primarily the combustion of fossil fuels and the global modification of the land surface, are transforming the Earth System at unprecedented scale. Climate change and the overexploitation of natural resources may soon overwhelm the adaptive capacities of many ecosystems and societies, which could lead to substantial losses in human well-being and political destabilization. In this context, it is the goal of this thesis to contribute to a better understanding of the most important global drivers that will determine the future of the land biosphere during this century: climate change and human land use. Based on a Dynamic Global Vegetation Model (DGVM), the first part of this thesis examines two large climatic disturbances of the terrestrial carbon cycle that were observed during the last three decades. These analyses focus on the effects of changes in temperature, precipitation and radiation on plant productivity and soil decomposition. Results indicate that increased carbon storage in the land biosphere explains the most part of the atmospheric CO2 anomaly. The second part of this thesis addresses the worldwide increasing demand for bioenergy that may become the most important driver of future land use change due to the large area requirements of biomass cultivation. A combination of vegetation modeling and spatial data analyses is used to assess global bioenergy potentials that consider various sustainability requirements for food security, biodiversity protection and the reduction of greenhouse gas emissions and to evaluate the environmental impacts of large-scale energy crop cultivation. The results indicate that bioenergy may provide between 15 and 25% of the global energy demand in 2050. Exploiting these potentials, however, requires the conversion of large amounts of natural vegetation into agricultural land affecting a large number of ecosystems already fragmented and degraded by land use change.