Long-Wavelength Quantum Well Infrared Photodetectors
In: Defence science journal: DSJ, Band 51, Heft 1, S. 35-52
ISSN: 0011-748X
36 Ergebnisse
Sortierung:
In: Defence science journal: DSJ, Band 51, Heft 1, S. 35-52
ISSN: 0011-748X
In: HELIYON-D-22-11338
SSRN
Infrared photodetectors have received much attention for several decades due to their broad applications in the military, science, and daily life. However, for achieving an ideal signal-to-noise ratio and a very fast response, cooling is necessary in those devices, which makes them bulky and costly. Thus, room-temperature infrared photodetectors have emerged as a hot research direction. Novel low-dimensional materials with their easy fabrication and excellent photoelectronic properties provide a possible solution for room-temperature infrared photodetectors. This review aims to summarize the preparation methods and characterization of several low-dimensional materials (PbS, PbSe and HgTe, new two-dimensional materials) with great concern and the room-temperature infrared photodetectors based on them.
BASE
Benefiting from the inherent capacity for detecting longer wavelengths inaccessible to human eyes, infrared photodetectors have found numerous applications in both military and daily life, such as individual combat weapons, automatic driving sensors and night-vision devices. However, the imperfect material growth and incomplete device manufacturing impose an inevitable restriction on the further improvement of infrared photodetectors. The advent of artificial microstructures, especially metasurfaces, featuring with strong light field enhancement and multifunctional properties in manipulating the light–matter interactions on subwavelength scale, have promised great potential in overcoming the bottlenecks faced by conventional infrared detectors. Additionally, metasurfaces exhibit versatile and flexible integration with existing detection semiconductors. In this paper, we start with a review of conventionally bulky and recently emerging two-dimensional material-based infrared photodetectors, i.e., InGaAs, HgCdTe, graphene, transition metal dichalcogenides and black phosphorus devices. As to the challenges the detectors are facing, we further discuss the recent progress on the metasurfaces integrated on the photodetectors and demonstrate their role in improving device performance. All information provided in this paper aims to open a new way to boost high-performance infrared photodetectors.
BASE
Defects play an important role in tailoring the optoelectronic properties of materials. Here we demonstrate that sulphur vacancies are able to engineer sub-band photoresponse into the short-wave infrared range due to formation of in-gap states in Bi2S3 single crystals supported by density functional (DF) calculations. Sulfurization and subsequent refill of the vacancies results in faster response but limits the spectral range to the near infrared as determined by the bandgap of Bi2S3. A facile chemical treatment is then explored to accelerate the speed of sulphur deficient (SD)-based detectors on the order of 10 ms without sacrificing its spectral coverage into the infrared, while holding a high D* close to 10^15 Jones in the visible-near infrared range and 10^12 Jones at 1.6 um. This work also provides new insights into the role sulphur vacancies play on the electronic structure and, as a result, into sub-bandgap photoresponse enabling ultrasensitive, fast and broadband photodetectors. ; The authors acknowledge financial support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 725165), the Spanish Ministry of Economy and Competitiveness (MINECO), and the "Fondo Europeo de Desarrollo Regional" (FEDER) through grant TEC2017-88655-R. The authors also acknowledge financial support from Fundacio Privada Cellex, the program CERCA and from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (SEV-2015-0522). Y.Y. acknowledges support from the National Natural Science Foundation of China under grant no. 61805045. S.C. acknowledges support from Marie Curie Standard European Fellowship ("NAROBAND", H2020-MSCA-IF-2016-750600). Furthermore, the research leading to these results has received funding from the European Union H2020 Programme under grant agreement no. 785219 Graphene Flagship ; Peer reviewed
BASE
Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at -10V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices. Photomutiplication-type organic photodetectors (PM-OPDs) are attractive for various next-generation technologies due to their lower cost, higher sensitivity and technological utility. Here, the authors report vacuum-processed narrowband PM-OPDs with enhanced sub-bandgap external quantum efficiency. ; J.K. acknowledges the German Academic Exchange Service for the Ph.D. fellowship. J.B. acknowledges the DFG project VA 1035/5-1 (Photogen) and the Sächsische Aufbaubank through project no. 100325708 (InfraKart). E.B. thanks Roland Schulze (IPF) for performing the ellipsometry measurements. L.B. acknowledges the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement number 722651 (SEPOMO). ; Peer review information Nature Communications thanks Qiuming Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
BASE
Recent progress in Type-II strained layer superlattice (SLS) material systems has offered viable alternatives towards achieving large format, small-pitch, and low-cost focal plane arrays for different military and commercial applications. For focal plane array fabrication, in order to address difficulties associated with mesa-isolation etching or the complex surface treatment/ passivation process, planar structures have been considered. In this work, a comparative study on the recent progress on the planar SLS photodetector using ion-implantation for device isolation is presented. The devices presented here are nBn and pBn heterostructure InAs/InAsSb SLS photodetectors, where Zn and Si were chosen as the ion implants, respectively. The electrical and optical performance of the planar devices were compared to each other and with associated mesa-etched fabricated devices, to give a deeper view of the device performance.
BASE
In: Defence science journal: a journal devotet to science & technology in defence, Band 51, Heft 1, S. 35-52
ISSN: 0011-748X
Infrared photodetectors are gaining remarkable interest due to their widespread civil and military applications. Low-dimensional materials such as quantum dots, nanowires, and two-dimensional nanolayers are extensively employed for detecting ultraviolet to infrared lights. Moreover, in conjunction with plasmonic nanostructures and plasmonic waveguides, they exhibit appealing performance for practical applications, including sub-wavelength photon confinement, high response time, and functionalities. In this review, we have discussed recent advances and challenges in the prospective infrared photodetectors fabricated by low-dimensional nanostructured materials. In general, this review systematically summarizes the state-of-the-art device architectures, major developments, and future trends in infrared photodetection.
BASE
Near infrared photodetectors are a widespread and fundamental technology in many disciplines, from astronomy and telecommunications to medical sciences. Current technologies are now striving to include new aspects in this technology such as wearability, flexibility and tunability. Organic photodetectors easily offer many of those advantages but their relatively high bandgaps hinder NIR operation. In this work, we demonstrate solution processed organic photodetectors with improved NIR response thanks to a nanostructured active layer in the shape of a photonic crystal. The latter strongly increases the charge transfer state absorption, which is normally weak but broadband, increasing the optical path of light and resulting in remarkable photoresponse significantly below the band gap of the blend. We show responsivities up to 50 mA W−1 at 900 nm for PBTTT:PC71BM based photodetectors. On top of that, by varying the lattice parameter of the photonic crystal structure, the spectral response of the photodetectors can be tuned beyond 1000 nm. Furthermore, our photonic structure can be easily implemented in the device in a single nanoimprinting step, with minimal disruption on the fabrication process, which makes this approach very promising for upscaling. ; We greatly acknowledge financial support from the Ministerio de Ciencia, Innovación y Universidades MICINN with projects PGC2018-095411-B-I00, MAT2016-79053-P and MAT2015-70850-P and the "Severo Ochoa" excellence program SEV-2015-0496; Generalitat de Catalunya program AGAUR 2017-SGR-00488; and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grants no. CoG648901 and StG637116). P. M. acknowledges financial support from an FPI contract (2017) of the MICINN (Spain) cofounded by the ESF. M. G. R. acknowledges financial support from an FPU grant (no. 16/02631) (2017) of the MICINN (Spain). M. G. R. and P. M. B. acknowledge the departments of Physics, Chemistry and Geology of the Autonomous University of Barcelona (UAB) as coordinators of the PhD programme in Materials Science. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). ; Peer reviewed
BASE
This paper presents an overview of the recent developments in III–V semiconductor lasers and detectors operating in the 2–3 μm wavelength range, which are highly desirable for various important applications, such as military, communications, molecular spectroscopy, biomedical surgery, and environmental protection. The lasers and detectors with different structure designs are discussed and compared. Advantages and disadvantages of each design are also discussed. Promising materials and structures to obtain high performance lasers and detectors operating in the 2–3 μm region are also suggested. ; Thanks are due to Australian Research Council for the financial support.
BASE
This paper presents an overview of the recent developments in III–V semiconductor lasers and detectors operating in the 2–3 μm wavelength range, which are highly desirable for various important applications, such as military, communications, molecular spectroscopy, biomedical surgery, and environmental protection. The lasers and detectors with different structure designs are discussed and compared. Advantages and disadvantages of each design are also discussed. Promising materials and structures to obtain high performance lasers and detectors operating in the 2–3 μm region are also suggested. ; Thanks are due to Australian Research Council for the financial support.
BASE
Broadband infrared photodetectors have profound importance in diverse applications including security, gas sensing, bioimaging, spectroscopy for food quality, and recycling, just to name a few. Yet, these applications can currently be served by expensive epitaxially grown photodetectors, limiting their market potential and social impact. The use of colloidal quantum dots (CQDs) and 2D materials in a hybrid layout is an attractive alternative to design low-cost complementary metal-oxide-semiconductor (CMOS) compatible infrared photodetectors. However, the spectral sensitivity of these conventional hybrid detectors is restricted to 2.1 µm. Herein, a hybrid structure comprising molybdenum disulfide (MoS2) with lead selenide (PbSe) CQDs is presented to extend their sensitivity further toward the mid-wave infrared, up to 3 µm. A room-temperature responsivity of 137.6 A/W and a detectivity of 7.7 × 10^10 Jones are achieved at 2.55 µm owing to highly efficient photoexcited carrier separation at the interface of MoS2 and PbSe in combination with an oxide coating to reduce dark current; the highest value is yet for a PbSe-based hybrid device. These findings strongly support the successful fabrication of hybrid devices, which may pave the pathway for cost-effective, high-performance, next-generation, novel photodetectors. ; The authors acknowledge financial support from the European Research Council (ERC) under the European Union's Horizon 2020 research (grant agreement no. 725165) as well as Graphene Flagship under Grant Agreement Nr. 881603 (Core3). The authors also acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO), and the "Fondo Europeo de Desarrollo Regional" (FEDER) through grant TEC2017-88655-R, from the Spanish State Research Agency through the "Severo Ochoa" program for Centers of Excellence in R&D (CEX2019-000910-S), from Fundació Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya through the CERCA program. ; Peer Reviewed ; Postprint (author's final draft)
BASE
Integrating and manipulating the nano-optoelectronic properties of Van der Waals heterostructures can enable unprecedented platforms for photodetection and sensing. The main challenge of infrared photodetectors is to funnel the light into a small nanoscale active area and efficiently convert it into an electrical signal. Here, we overcome all of those challenges in one device, by efficient coupling of a plasmonic antenna to hyperbolic phonon-polaritons in hexagonal-BN to highly concentrate mid-infrared light into a graphene pn-junction. We balance the interplay of the absorption, electrical and thermal conductivity of graphene via the device geometry. This approach yields remarkable device performance featuring room temperature high sensitivity (NEP of 82 pW/Hz) and fast rise time of 17 nanoseconds (setup-limited), among others, hence achieving a combination currently not present in the state-of-the-art graphene and commercial mid-infrared detectors. We also develop a multiphysics model that shows very good quantitative agreement with our experimental results and reveals the different contributions to our photoresponse, thus paving the way for further improvement of these types of photodetectors even beyond mid-infrared range. ; European Union. Seventh Framework Programme (Grants 785219 and 881603, Graphene Flagship for Core2 and Core3) ; Spain. Ministry of Economy and Competitiveness ((Grant SEV-2017-0706) ; United States. Army Research Office (Grant W911NF18-1-0431)
BASE
Optical sensing in the mid- and long-wave infrared (MWIR, LWIR) is of paramount importance for a large spectrum of applications including environmental monitoring, gas sensing, hazard detection, food and product manufacturing inspection, and so forth. Yet, such applications to date are served by costly and complex epitaxially grown HgCdTe quantum-well and quantum-dot infrared photodetectors. The possibility of exploiting low-energy intraband transitions make colloidal quantum dots (CQD) an attractive low-cost alternative to expensive low bandgap materials for infrared applications. Unfortunately, fabrication of quantum dots exhibiting intraband absorption is technologically constrained by the requirement of controlled heavy doping, which has limited, so far, MWIR and LWIR CQD detectors to mercury-based materials. Here, we demonstrate intraband absorption and photodetection in heavily doped PbS colloidal quantum dots in the 5-9 µm range, beyond the PbS bulk band gap, with responsivities on the order of 10-4 A/W at 80 K. We have further developed a model based on quantum transport equations to understand the impact of electron population of the conduction band in the performance of intraband photodetectors and offer guidelines toward further performance improvement. ; I.R. acknowledges support from the Ministerio de Economiá , Industria y Competitividad of Spain via a Juan de la Cierva fellowship. The authors acknowledge financial support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement 725165), the Spanish Ministry of Economy and Competitiveness (MINECO), and the "Fondo Europeo de Desarrollo Regional" (FEDER) through Grant TEC2017- 88655-R. The authors also acknowledge financial support from Fundacio Privada Cellex, the program CERCA and from the Spanish Ministry of Economy and Competitiveness, through the "Severo Ochoa" Programme for Centres of Excellence in R&D (SEV-2015-0522). S.C. acknowledge support from a Marie Curie Standard European Fellowship ("NAROBAND", H2020-MSCA-IF-2016-750600). ; Peer Reviewed ; Postprint (published version)
BASE